Tools with chamfered edges are often used in high speed machining of hard materials because they provide compelling cutting toughness and reduced tool wear. Chamfered tools are also responsible for the dead metal zone (DMZ). Through numerical simulation of orthogonal cutting with AISI 4340 steel, this paper examines the mechanism of the DMZ, the cutting speed, the impacts of the chamfer angle, and the coefficient of friction on the generation of the DMZ. The analysis is based upon the Arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) for the continuous process of chip formation. The different chamfered angles, cutting speeds, and friction coefficient conditions are utilized in the simulation. The research demonstrates that a zone of trapped material called DMZ has been formed beneath the chamfer and serves as an effective cutting edge of the tool. Additionally, the dead metal zone DMZ becomes smaller while the cutting speed increases or the friction coefficient decreases. The machining forces rise with increasing chamfer angles, rise with increasing friction coefficients, and fall with increasing cutting speed in both the cutting and thrust directions. In this paper, the effect of different chamfering tools on AISI 4340 steel using carbide tools in the simulation environment is studied. It has certain reference significance for studying the formation mechanism of the dead zone of difficult-to-machine materials such as AISI4340 and improving the processing efficiency and workpiece surface quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324414 | PMC |
http://dx.doi.org/10.3390/mi13071156 | DOI Listing |
Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation.
View Article and Find Full Text PDFBackground: While the formation of β-amyloid plaques and neurofibrillary "tau" tangles are considered hallmarks of AD pathology, therapeutic targeting of these pathways has been unsuccessful, highlighting the necessity to define the underlying molecular mechanisms driving AD progression. Previous studies from our lab demonstrated that mitochondrial calcium (Ca) overload through neuronal ablation of the mitochondrial Na/Ca exchanger (NCLX) is sufficient to trigger 'AD-like' pathology, including mitochondrial dysfunction, amyloid deposition and tau pathology, and cognitive decline. In addition, we found significant proteomic remodeling of components of the mitochondrial calcium uniporter channel (mtCU), the primary mediator of Ca uptake, in frontal cortex samples isolated post-mortem from patients diagnosed with non-familial/sporadic AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Background: Women with suspected coronary microvascular dysfunction (CMD) may be at higher risk of experiencing cognitive decline due to cerebral small vessel disease, a known contributor to Alzheimer's disease and related dementias (ADRD). A potential underlying mechanism that could accelerate this cognitive decline is the accumulation of brain tissue iron, which has been previously linked to changes in brain function potentially caused by oxidative stress and cell death. Therefore, we aim to elucidate whether a similar mechanism could affect women with suspected CMD by investigating the potential role of iron deposition on the brain's functional organization and its effect on cognition using advanced magnetic resonance imaging (MRI).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Illinois Institute of Technology, Chicago, IL, USA.
Background: Elevated iron in brain is a source of free radicals that causes oxidative stress which has been linked to neuropathologies and cognitive impairment among older adults. The aim of this study was to investigate the association of iron levels with transverse relaxation rate, R2, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies.
Method: Cerebral hemispheres from 437 older adults participating in the Rush Memory and Aging Project study (Table 1) were imaged ex-vivo using 3T MRI scanners.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!