Experimental Investigation on the Effect of Surface Shape and Orientation in Magnetic Field Assisted Mass Polishing.

Micromachines (Basel)

State Key Laboratory in Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Published: June 2022

Magnetic field assisted finishing (MFAF) technology has been widely used in industries such as aerospace, biomedical, and the optical field for both external and internal surface finishing due to its high conformability to complex surfaces and nanometric surface finishing. However, most of the MFAF methods only allow polishing piece-by-piece, leading to high post-processing costs and long processing times with the increasing demand for high precision products. Hence, a magnetic field-assisted mass polishing (MAMP) method was recently proposed, and an experimental investigation on the effect of surface posture is presented in this paper. Two groups of experiments were conducted with different workpiece shapes, including the square bar and roller bar, to examine the effect of surface orientation and polishing performance on different regions. A simulation of magnetic field distribution and computational fluid dynamics was also performed to support the results. Experimental results show that areas near the chamber wall experience better polishing performance, and the surface parallel or inclined to polishing direction generally allows better shearing and thus higher polishing efficiency. Both types of workpieces show notable polishing performance where an 80% surface roughness improvement was achieved after 20-min of rough polishing and 20-min of fine polishing reaching approximately 20 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317570PMC
http://dx.doi.org/10.3390/mi13071060DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
polishing performance
12
polishing
10
experimental investigation
8
investigation surface
8
field assisted
8
mass polishing
8
finishing mfaf
8
surface finishing
8
surface
7

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF

Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!