Zinc sulfide (ZnS) nanoparticles were fabricated using the chemical precipitation method. The X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) techniques were used to investigate the structural parameters of the formed ZnS. The hexagonal crystal structure of the Zn and ZnS phases was formed. The average crystallite size of the ZnS phase is 10.3 nm, which is much smaller than that of the Zn phase (54.5 nm). Several frequencies and phonon modes were detected in the Raman scattering spectrum belonging to the ZnS nanoparticles. The synthesized ZnS nanoparticles were used as catalysts to eliminate the Congo red (CR) dye, with different concentrations, from synthetic wastewater. The impact of the CR dye concentration and shaking period on the adsorption of CR was thoroughly investigated, and various adsorption kinetic models were tested. After 3 h of shaking, the adsorption efficiency reached 26.01% for 40 mg/L CR dye and 27.84% for 20 mg/L CR dye. The adsorption capacities of the CR dye in the presence of ZnS are 16% and 9% for 40 and 20 mg/L, respectively. Based on the correlation factor, the intraparticle diffusion kinetic model was considered the best of the tested models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322733PMC
http://dx.doi.org/10.3390/ma15145048DOI Listing

Publication Analysis

Top Keywords

zns nanoparticles
12
congo red
8
red dye
8
synthetic wastewater
8
zinc sulfide
8
mg/l dye
8
zns
7
dye
6
adsorption
5
adsorption study
4

Similar Publications

As a newly emerging technology, conformational engineering (CE) has been gradually displaying the power of producing protein-like nanoparticles (NPs) by tuning flexible protein fragments into their original native conformation on NPs. But apparently, not all types of NPs can serve as scaffolds for CE. To expedite the CE technology on a broader variety of NPs, the essential characteristic of NPs as scaffolds for CE needs to be identified.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.

View Article and Find Full Text PDF

Background: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.

Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!