Magnesium-lithium alloy is the lightest metal alloy material so far, and the ultra-thin plate is also one of the main trends in the future development of Mg-Li alloy. In order to explore how to prepare LZ91 ultra-thin Mg-Li alloy, this topic adopts the combination of the finite element method (FEM) and visco-plastic self-consistent (VPSC) calculation, electron back-scattered diffraction (EBSD) and tensile experiment, and uses the asymmetric warm rolling process to realize the processing of ultra-thin LZ91 Mg-Li alloy plate with a thickness of 0.25 mm. The experimental results show that the maximum basal texture strengths of 1 mm initial plate and 0.25 mm ultra-thin rolled plate are 36.02 mud and 29.19 mud, respectively. The asymmetric warm rolling process not only reduces the basal texture strength but also significantly refines the grains. The tensile strength and yield strength of 0.25 mm ultra-thin rolled plate along the rolling direction reached 206.8 MPa and 138.4 MPa, respectively. This has a positive effect on the mechanical properties of subsequent materials. VPSC results show that the base slip is the main factor in Mg-Li alloy asymmetric warm rolling, and a large number of tensile twinning are initiated due to the coordinated deformation of the body-centered cubic (BCC) phase, which is beneficial to improve the plastic deformation capacity of Mg-Li alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322923PMC
http://dx.doi.org/10.3390/ma15145026DOI Listing

Publication Analysis

Top Keywords

mg-li alloy
20
asymmetric warm
16
warm rolling
16
alloy
8
magnesium-lithium alloy
8
alloy asymmetric
8
rolling process
8
basal texture
8
025 ultra-thin
8
ultra-thin rolled
8

Similar Publications

Due to limited slip systems activated at room temperature, the plastic deformation of Mg and its alloys without any preheating of initial billets is significantly limited. To overcome those issues, new methods of severe plastic deformation are discovered and developed. One such example is extrusion with an oscillating die, called KoBo.

View Article and Find Full Text PDF

The rising industrial demand for ultra-lightweight materials with exceptional strength and toughness has intensified interest in dual-phase Mg-Li alloys due to their low density and high specific strength. While much of the research on Mg-Li alloys has concentrated on conventional strengthening methods, such as grain refinement and solid-solution strengthening, overcoming the challenge of plastic deformation compatibility between the α- and β-phases remains unresolved. This study focuses on Mg-8Li binary alloy, systematically investigating the impact of rolling deformation temperature and strain on the phase structures.

View Article and Find Full Text PDF
Article Synopsis
  • - Mg-Li alloys may serve as effective bioresorbable implants that release lithium (Li) for treating bipolar and neurodegenerative disorders, potentially offering advantages over traditional Li salts.
  • - In a study utilizing a neuroinflammation model, two Mg-Li alloys (Mg-1.6Li and Mg-9.5Li) were tested, showing that Li from these alloys enhanced the phosphorylation of GSK3β in glial cells more effectively than Li salts.
  • - The results indicate that Mg-Li alloys can improve the modulation of inflammation-related gene expression and support further exploration of their therapeutic potential in neurological treatments.
View Article and Find Full Text PDF

This work intended to improve the precision and machining efficiency of Magnesium alloy (Mg-Li-Sr) using Wire electrical discharge machining (WEDM). Mg-Li-Sr alloy is prepared through inert gas assisted stir casting route. Taguchi approach is used for experimental design for WEDM parameter such as pulse OFF time, pulse ON time, wire feed rate, servo voltage and current.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a novel ultralight alloy (LAZWMVT) with impressive strength, primarily due to small amounts of Sn, which enhance both strength and stiffness.
  • The study reveals that the MgSn phase not only serves as a precipitate but also effectively binds the α-Mg/β-Li interface, leading to more stable structures.
  • First-principle calculations indicate that MgSn significantly improves interfacial bond strength compared to the direct Mg and Li bonds, with stronger chemical bonds attributed to the interaction between Mg 3p and Sn 5p orbitals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!