To attain a comfortable building interior, building windows play a crucial role. Because of the transparent nature of the window, it allows heat loss and gain and daylight. Thus, they are one of the most crucial parts of the building envelope that have a significant contribution to the overall building energy consumption. The presence of dust particles on a window can change the entering light spectrum and creates viewing issues. Thus, self-cleaning glazing is now one of the most interesting research topics. However, aside from the self-cleaning properties, there are other properties that are nominated as glazing factors and are imperative for considering self-cleaning glazing materials. In this work, for the first time, Hf-doped ZnO was investigated as self-cleaning glazing and its glazing factors were evaluated. These outcomes show that the various percentages of ZnO doping with Hf improved the glazing factors, making it a suitable glazing candidate for the cold-dominated climate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323430PMC
http://dx.doi.org/10.3390/ma15144934DOI Listing

Publication Analysis

Top Keywords

self-cleaning glazing
16
glazing factors
12
glazing
8
self-cleaning
5
comfort analysis
4
analysis hafnium
4
hafnium doped
4
doped zno
4
zno coated
4
coated self-cleaning
4

Similar Publications

To attain a comfortable building interior, building windows play a crucial role. Because of the transparent nature of the window, it allows heat loss and gain and daylight. Thus, they are one of the most crucial parts of the building envelope that have a significant contribution to the overall building energy consumption.

View Article and Find Full Text PDF

The thermal performance of window glazing requires improvement for a sustainable built environment at an acceptable cost. The current work demonstrates a multifold smart composite consisting of an optimized InO/ZnO-polymethyl methacrylate-paraffin composite to reduce heat exchange through the combined self-cleaning and energy-saving envelope of the smart built environment. This work has attempted to develop a smart composite coating that combines photosensitive metal oxide and phase change materials and investigate their thermal comfort performance as a glazed window.

View Article and Find Full Text PDF

Self-Densified Optically Transparent VO Thermochromic Wood Film for Smart Windows.

ACS Appl Mater Interfaces

May 2021

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Optically transparent wood has emerged as a promising glazing material. Thanks to the high optical transmittance, strong mechanical properties, and excellent thermal insulation capability of transparent wood, it offers a potential alternative to glass for window applications. Recently, thermo-, electro-, and photochromic transparent woods that dynamically modulate light transmittance have been investigated to improve building energy efficiency.

View Article and Find Full Text PDF

Transparent, superhydrophilic materials are indispensable for their self-cleaning function, which has become an increasingly popular research topic, particularly in photovoltaic (PV) applications. Here, we report hydrophilic and superhydrophilic ZnO by varying the morphology for use as a self-cleaning coating for PV applications. Three different ZnO microstructures, such as ZnO nanorods (R-ZnO), ZnO microflowers (F-ZnO), and ZnO microspheres (M-ZnO), were developed by hydrothermal methods.

View Article and Find Full Text PDF

The number of commercial products claiming self-cleaning properties is rising and testing of long-term activity and durability of such coatings needs to be addressed more. The time-dependent changes of different characteristics like haze, transparency, and color are essential for transparent glazing materials. Herein, we aimed to examine whether the laboratory results obtained on the Zr-modified-titania-silica (TiZr) self-cleaning materials would translate to larger-scale outdoor-exposed testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!