This paper proposes a new form of composite beam: a multi-cavity steel-concrete composite beam. This composite beam uses internal perforated steel plate to connect the concrete with the steel structure, and shear connectors are no longer required, which is more suitable for industrial production. The mechanical properties of a multi-cavity steel-concrete composite beam in industrial applications are studied to avoid failures. In this paper, two multi-cavity steel-concrete composite beams with a size of 2500 mm × 200 mm × 300 mm were prepared, in which the angle of internal porous steel plate was set as 60° and 75°, respectively. A full-scale static load test was conducted on the beams to research its deformation and failure modes. The finite element software ANSYS was used to perform finite element modeling of multi-cavity steel-concrete composite beams and to analyze the influence of concrete strength, steel strength, porosity, and the angle of internal porous steel plate on the mechanical properties of composite beams. The results are as follows: before the composite beam reaches its serviceability limit state, its deformation basically shows a linear change; with the increase of load, the plastic deformation is gradually obvious, which can still provide a certain bearing capacity in the failure stage; the bearing capacity of the composite beam is positively correlated with the strength of concrete and steel, while negatively correlated with the porosity and the angle of internal porous steel plate; composite beams have large bearing capacity, good ductility and integrity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320568PMC
http://dx.doi.org/10.3390/ma15144882DOI Listing

Publication Analysis

Top Keywords

composite beam
28
multi-cavity steel-concrete
20
steel-concrete composite
20
steel plate
16
composite beams
16
mechanical properties
12
angle internal
12
internal porous
12
porous steel
12
bearing capacity
12

Similar Publications

Robot-assisted Endodontic Retreatment: A Case Report with Clinical Considerations.

J Endod

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Introduction: Fiber posts present significant challenges for nonsurgical endodontic retreatment, as improper removal may result in iatrogenic root perforation or even root fracture. Recently, robotic technology has attracted considerable attention in dentistry and active dental robotic (ADR) systems can perform procedures based on preset instructions, minimizing reliance on the dentist's experience. This case report describes the application of an ADR system for fiber post removal through an existing zirconia crown.

View Article and Find Full Text PDF

Background: Tumour hypoxia resulting from inadequate perfusion is common in many solid tumours, including prostate cancer, and constitutes a major limiting factor in radiation therapy that contributes to treatment resistance. Emerging research in preclinical animal models indicates that exercise has the potential to enhance the efficacy of cancer treatment by modulating tumour perfusion and reducing hypoxia; however, evidence from randomised controlled trials is currently lacking. The 'Exercise medicine as adjunct therapy during RADIation for CAncer of the prostaTE' (ERADICATE) study is designed to investigate the impact of exercise on treatment response, tumour physiology, and adverse effects of treatment in prostate cancer patients undergoing external beam radiation therapy (EBRT).

View Article and Find Full Text PDF

Background: In this study, we estimated the risk of surgically treated postoperative periprosthetic femoral fractures (POPFFs) associated with femoral implants frequently used for total hip arthroplasty (THA).

Methods: In this cohort study of patients who underwent primary THA in England between January 1, 2004, and December 31, 2020, POPFFs were identified from prospectively collected revision records and national hospital records. POPFF incidence rates, adjusting for potential confounders, were estimated for common stems.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

The issues of numerous steel beam components and the tendency for deck cracking under negative bending moment zones have long been challenges faced by traditional composite I-beams with flat steel webs. This study introduces an optimized approach by modifying the structural design and material selection, specifically substituting flat steel webs with corrugated steel webs and using ultra-high-performance concrete for the deck in the negative bending moment zone. Three sets of model tests were conducted to compare and investigate the influence of deck material and web forms on the bending and crack resistance of steel-concrete composite I-beams under a negative bending moment zone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!