Fluorine-doped tin oxide thin films (SnO:F) are widely used as transparent conductive oxide electrodes in thin-film solar cells because of their appropriate electrical and optical properties. The surface morphology of these films influences their optical properties and therefore plays an important role in the overall efficiencies of the solar cells in which they are implemented. At rough surfaces light is diffusely scattered, extending the optical path of light inside the active layer of the solar cell, which in term improves light absorption and solar cell conversion efficiency. In this work, we investigated the surface morphology of undoped and doped SnO thin films and their influence on the optical properties of the films. We have compared and analysed the results obtained by several complementary methods for thin-film surface morphology investigation: atomic force microscopy (AFM), transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS). Based on the AFM and TEM results we propose a theoretical model that reproduces well the GISAXS scattering patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315605 | PMC |
http://dx.doi.org/10.3390/ma15144814 | DOI Listing |
Cornea
January 2025
Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.
Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.
J Exp Bot
January 2025
Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFJ Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!