One of the main difficulties with employing recycled asphalt pavement (RAP) in hot mix asphalt (HMA) is bitumen aging; hence, the percentage of RAP in the HMA is limited. This research evaluates the rheological properties of the RAP binder and the performance of HMA containing high RAP content using waste engine oil (WEO) from an Electrical Power Plant as a rejuvenator. The rheological and microstructural properties of the RAP binder and rejuvenated RAP binder were determined in the laboratory. Both the recycled and rejuvenated recycled mixes were tested for Marshall stability, indirect tensile strength, dynamic modulus (E*), and flow number tests. The RAP binder was recovered using two different processes: rotavapor distillation followed by centrifugation (RCRD) and column distillation without centrifugation (RNCCD). The optimal WEO percentages for the RCRD and RNCCD recovery procedures were 0.5% and 3%, respectively. The Marshall test results revealed that adding WEO to the recycled mix enhanced its stability and flow compared to the control mix. The rejuvenated mix containing recovered binder from the RCRD recovery process was found to be better than the rejuvenated mix containing recovered binder from the RNCCD recovery process. The rejuvenated recycled mixes outperformed the recycled mix in terms of moisture resistance, which was evidenced by tensile strength ratio values of 0.88, 0.90, and 0.91 for the control and 0.5% and 3% WEO modified mixes, respectively. Finally, the results of dynamic modulus and flow number testing revealed that the rejuvenated mixes had a modest drop in both the dynamic modulus and flow number compared to the non-rejuvenated mix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323027 | PMC |
http://dx.doi.org/10.3390/ma15144811 | DOI Listing |
Environ Sci Technol
January 2025
College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.
Reclaimed asphalt pavement (RAP) is a widely used end-of-life (EoL) material in asphalt pavements to increase the material circularity. However, the performance loss due to using RAP in the asphalt binder layer often requires a thicker layer, leading to additional material usage, energy consumption, and transportation effort. In this study, we developed a parametric and probabilistic life cycle assessment (LCA) framework to robustly compare various pavement designs incorporating recycled materials.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
The phylum Apicomplexa comprises eukaryotic parasites that cause fatal diseases affecting millions of people and animals worldwide. Their mitochondrial genomes have been significantly reduced, leaving only three protein-coding genes and highly fragmented mitoribosomal rRNAs, raising challenging questions about mitoribosome composition, assembly and structure. Our study reveals how Toxoplasma gondii assembles over 40 mt-rRNA fragments using exclusively nuclear-encoded mitoribosomal proteins and three lineage-specific families of RNA-binding proteins.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Civil and Environmental Engineering, Qatar University, Doha P.O. Box 2713, Qatar.
Great efforts have been made in recent years by the scientific community and the asphalt industry in developing sustainable technologies for the production of asphalt mixtures for road paving applications, pursuing the use of ever higher quantities of recycled materials. In this regard, the challenge is to define the optimal formulation of the mixture which allows the various component materials to be synergistically combined without compromising the performance and durability of the asphalt pavement. In such a context, the experimental study described in this paper aimed to provide a contribution to research by investigating sustainable asphalt mixtures containing 50% reclaimed asphalt pavement (RAP) and polymeric compound composed of 100% recycled plastics.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Civil Engineering, University of São Paulo, Av. Prof. Almeida Prado 83, São Paulo, SP, 05508-070, Brazil.
The use of warm mix asphalt (WMA) and reclaimed asphalt pavement (RAP) technologies presents challenges in optimizing binder activation and mechanical performance in asphalt mixtures. This study aimed to evaluate the effects of three WMA additives (sunflower oil, WarmGrip®, and natural zeolite) and different RAP contents (30% and 70%) on the rheological and mechanical properties of recycled asphalt mixtures. The research focused on assessing the degree of RAP binder activation, determining the extent of partial activation, and analyzing the impact on tensile strength, moisture resistance, modulus, fatigue life, and deformation resistance.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Department of Civil Engineering, University of North Dakota, Grand Forks, ND 58202, USA.
Waste Cooking Oil (WCO), Soy Oil (SO), and Wastewater Sludge (WWS) have great potential to increase reclaimed asphalt pavement (RAP) content for economic and environmental benefits. This study explored the effects of SO and WCO on rutting, fatigue cracking, and low-temperature cracking performance of binders and Hot Mix Asphalt (HMA) with high RAP content. The potential effect of WWS on the performance and compaction efforts of high RAP content mixes at a 10 °C (50 °F) lower compaction temperature than the control compaction temperature was also investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!