Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this work is to characterize the morphological, structural, and strength properties of model prototypes of new-generation TRi-structural ISOtropic particle fuel (TRISO) designed for Generation IV high-temperature gas reactors (HTGR-type). The choice of model structures consisting of inner pyrolytic carbon (I-PyC), silicon carbide (SiC), and outer pyrolytic carbon (O-PyC) as objects of research is motivated by their potential use in creating a new generation of fuel for high-temperature nuclear reactors. To fully assess their full functional value, it is necessary to understand the mechanisms of resistance to external influences, including mechanical, as in the process of operation there may be external factors associated with deformation and leading to the destruction of the surface of fuel structures, which will critically affect the service life. The objective of these studies is to obtain new data on the fuel properties, as well as their resistance to external influences arising from mechanical friction. Such studies are necessary for further tests of this fuel on corrosion and irradiation resistance, as closely as possible to real conditions in the reactor. The research revealed that the study samples have a high degree of resistance to external mechanical influences, due to the high strength of the upper layer consisting of pyrolytic carbon. The presented results of the radiation resistance of TRISO fuel testify to the high resistance of the near-surface layer to high-dose irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317622 | PMC |
http://dx.doi.org/10.3390/ma15144741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!