This review demonstrates current literature on pineal gland physiology, pathology, and animal model experiments to concisely explore future needs in research development with respect to pineal gland function and neuro-regenerative properties. The pineal gland plays an integral role in sleep and recovery by promoting physiologic circadian rhythms via production and release of melatonin. Yet, the current literature shows that the pineal gland has neuroprotective effects that modulate both peripheral and central nerve injuries through several direct and indirect mechanisms, such as angiogenesis and induction of growth factors and anti-inflammatory mediators. Animal models have also shown correlations between pineal gland function and metabolic homeostasis. Studies have shown that a functional pineal gland is essential in preventing and slowing the progression of certain diseases such as diabetes, osteoporosis, vertebral osteoarthritis, and neurodegenerative processes. Lastly, the array of cell culturing methods and animal models that can be used to further develop the study of pineal gland function and nervous system injury were reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317964PMC
http://dx.doi.org/10.3390/life12071057DOI Listing

Publication Analysis

Top Keywords

pineal gland
32
animal models
12
gland function
12
pineal
8
current literature
8
literature pineal
8
gland
7
gland cell
4
cell culture
4
animal
4

Similar Publications

MT1/cAMP/PKA Pathway in Melatonin-Regulated Sperm Capacitation.

Reprod Sci

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Alprazolam (Alp), a triazolobenzodiazepine, is widely prescribed for the treatment of sleep disorders, anxiety, and panic disorder. While oral administration remains the standard route, its slow onset of action has prompted interest in intranasal delivery as an alternative, offers the potential for direct drug delivery to the brain. This study aims to develop a fast-acting intranasal formulation of Alp (Alp-nd).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!