Structural Insights into Substrate Binding and Antibiotic Inhibition of Enterobacterial Penicillin-Binding Protein 6.

Life (Basel)

Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Malaysia.

Published: July 2022

remains the second most common cause of shigellosis in young children and is now increasingly dominant across developing countries. The global emergence of drug resistance has become a main burden in the treatment of infections and β-lactam antibiotics, such as pivmecillinam and ceftriaxone, are recommended to be used as second-line treatment. They work by inhibiting the biosynthesis of the peptidoglycan layer of bacterial cell walls, in which the final transpeptidation step is facilitated by penicillin-binding proteins (PBPs). In this study, using protein homology modelling, we modelled the structure of PBP6 from and comprehensively examined the molecular interactions between PBP6 and its pentapeptide substrate and two antibiotic inhibitors. The docked complex of PBP6 with pentapeptides showed that the substrate bound to the active site groove of the DD-carboxypeptidase domain, via hydrogen bonding interactions with the residues S79, V80, Q101, G144, D146 and R240, in close proximity to the catalytic nucleophile S36 for the nucleophilic attack. Two residues, R240 and T208, were found to be important in ligand recognition and binding, where they formed strong hydrogen bonds with the substrate and β-lactams, respectively. Our results provide valuable information on the molecular interactions essential for ligand recognition and catalysis by PBP6. Understanding these interactions will be helpful in the development of effective drugs to treat infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320039PMC
http://dx.doi.org/10.3390/life12071022DOI Listing

Publication Analysis

Top Keywords

molecular interactions
8
ligand recognition
8
structural insights
4
substrate
4
insights substrate
4
substrate binding
4
binding antibiotic
4
antibiotic inhibition
4
inhibition enterobacterial
4
enterobacterial penicillin-binding
4

Similar Publications

Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.

View Article and Find Full Text PDF

FlowPacker: Protein side-chain packing with torsional flow matching.

Bioinformatics

January 2025

Department of Molecular Genetics, University of Toronto, Ontario, M5S 3K3, Canada.

Motivation: Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.

Results: Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime.

View Article and Find Full Text PDF

A new pipeline SPICE identifies novel JUN-IKZF1 composite elements.

Elife

January 2025

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.

Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.

View Article and Find Full Text PDF

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!