Radical treatment of patients diagnosed with inoperable and locally advanced head and neck cancers (LAHNC) is still a challenge for clinicians. Prediction of incomplete response (IR) of primary tumour would be of value to the treatment optimization for patients with LAHNC. Aim of this study was to develop and evaluate models based on clinical and radiomics features for prediction of IR in patients diagnosed with LAHNC and treated with definitive chemoradiation or radiotherapy. Clinical and imaging data of 290 patients were included into this retrospective study. Clinical model was built based on tumour and patient related features. Radiomics features were extracted based on imaging data, consisting of contrast- and non-contrast-enhanced pre-treatment CT images, obtained in process of diagnosis and radiotherapy planning. Performance of clinical and combined models were evaluated with area under the ROC curve (AUROC). Classification performance was evaluated using 5-fold cross validation. Model based on selected clinical features including ECOG performance, tumour stage T3/4, primary site: oral cavity and tumour volume were significantly predictive for IR, with AUROC of 0.78. Combining clinical and radiomics features did not improve model's performance, achieving AUROC 0.77 and 0.68 for non-contrast enhanced and contrast-enhanced images respectively. The model based on clinical features showed good performance in IR prediction. Combined model performance suggests that real-world imaging data might not yet be ready for use in predictive models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317569PMC
http://dx.doi.org/10.3390/jpm12071092DOI Listing

Publication Analysis

Top Keywords

radiomics features
16
based clinical
12
clinical radiomics
12
imaging data
12
prediction incomplete
8
incomplete response
8
response primary
8
primary tumour
8
clinical
8
head neck
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!