, previously known as Asian , is one of the most commercially important edible fungi, with nutritional value and medicinal properties worldwide. However, precision genome editing using CRISPR/Cas9, which is a revolutionary technology and provides a powerful tool for molecular breeding, has not been established in . Here, plasmids harboring expression cassettes of Basidiomycete codon-optimized Cas9 and dual sgRNAs targeting under the control of the promoter and FfU6 promoter, respectively, were delivered into protoplasts of Dan3 strain through PEG-mediated transformation. The results showed that an efficient native U6 promoter of was identified, and ultimately several mutants exhibiting 5-fluorooric acid (5-FOA) resistance were obtained. Additionally, diagnostic PCR followed by Sanger sequencing revealed that fragment deletion between the two sgRNA target sites or small insertions and deletions (indels) were introduced in these mutants through the nonhomologous end joining (NHEJ) pathway, resulting in heritable changes in genomic information. Taken together, this is the first report in which a successful CRISPR/Cas9 genome-editing system based on dual sgRNAs was established in , which broadens the application of this advanced tool in Basidiomycetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318071 | PMC |
http://dx.doi.org/10.3390/jof8070693 | DOI Listing |
Wiley Interdiscip Rev RNA
January 2025
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity.
View Article and Find Full Text PDFCell Stem Cell
December 2024
Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany. Electronic address:
Mol Biotechnol
November 2024
Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China.
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disease. Genetic linkage analyses have identified that mutations in the exostosin glycosyltransferase (EXT)1 and EXT2 genes are linked to HME pathogenesis, with EXT1 mutation being the most frequent. The aim of this study was to generate a mice model with Ext1 gene editing to simulate human EXT1 mutation and investigate the genetic pathogenicity of Ext1 through phenotypic analyses.
View Article and Find Full Text PDFCurr Protoc
November 2024
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!