The rapid integration of genomic technologies in clinical diagnostics has resulted in the detection of a multitude of missense variants whose clinical significance is often unknown. As a result, a plethora of computational tools have been developed to facilitate variant interpretation. However, choosing an appropriate software from such a broad range of tools can be challenging; therefore, systematic benchmarking with high-quality, independent datasets is critical. Using three independent benchmarking datasets compiled from the ClinVar database, we evaluated the performance of ten widely used prediction algorithms with missense variants from 21 clinically relevant genes, including 1 and 2. A fourth dataset consisting of 1053 missense variants was also used to investigate the impact of type 1 circularity on their performance. The performance of the prediction algorithms varied widely across datasets. Based on Matthews Correlation Coefficient and Area Under the Curve, SNPs&GO and PMut consistently displayed an overall above-average performance across the datasets. Most of the tools demonstrated greater sensitivity and negative predictive values at the expense of lower specificity and positive predictive values. We also demonstrated that type 1 circularity significantly impacts the performance of these tools and, if not accounted for, may confound the selection of the best performing algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322961PMC
http://dx.doi.org/10.3390/ijms23147946DOI Listing

Publication Analysis

Top Keywords

missense variants
16
prediction algorithms
12
performance prediction
8
clinically relevant
8
type circularity
8
predictive values
8
performance
6
comprehensive evaluation
4
evaluation performance
4
algorithms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!