Trace Amine Associate Receptor 1 (TAAR1) as a New Target for the Treatment of Cognitive Dysfunction in Alzheimer's Disease.

Int J Mol Sci

Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.

Published: July 2022

Worldwide, approximately 27 million people are affected by Alzheimer's disease (AD). AD pathophysiology is believed to be caused by the deposition of the β-amyloid peptide (Aβ). Aβ can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aβ seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aβ-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aβ infusion in Aβ-treated mice. In vitro data showed that Aβ 1-42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aβ. Further studies are needed to better understand the interplay between TAAR1/Aβ and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aβ-induced cognitive impairments, such as AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318502PMC
http://dx.doi.org/10.3390/ijms23147811DOI Listing

Publication Analysis

Top Keywords

taar1
9
cognitive dysfunction
8
alzheimer's disease
8
aβ reduce
8
glutamatergic transmission
8
role taar1
8
taar1 agonist
8
agonist ro5256390
8
6
trace amine
4

Similar Publications

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Introduction: Aggression and self-harm disproportionately occur in youths preoccupied with social status tracking. These pathological conditions are linked to a serotonin (5-HT) deficit in the brain. Ablation of 5-HT biosynthesis by tryptophan hydroxylase 2 knockout (TPH2-KO) increases aggression in rodents.

View Article and Find Full Text PDF

A Clinically Oriented Review of New Antipsychotics for Schizophrenia.

Neuropsychiatr Dis Treat

December 2024

Department of Medicine and Surgery, Kore University of Enna, Enna (EN), Italy.

Article Synopsis
  • Current antipsychotics mainly target dopamine but often fail to address the complexity of schizophrenia and can cause significant side effects, highlighting a need for new treatments.
  • Recent research is focusing on non-dopaminergic antipsychotics, such as muscarinic agonists and 5-HT2A antagonists, to offer better therapeutic options for schizophrenia.
  • While new drugs like xanomeline-trospium have been approved, others like bitopertin and pimavanserin were halted in development, emphasizing the need for cautious evaluation of their efficacy and safety.
View Article and Find Full Text PDF
Article Synopsis
  • Trace amines are biologically active amines that resemble traditional monoamines and are quickly broken down by monoamine oxidases, leading to their presence in low quantities.
  • TAAR1 is the primary receptor for trace amines, found in the central nervous system and peripheral areas, and plays a key role in regulating neurotransmission, making it a promising target for treating neuropsychiatric disorders.
  • Recent research highlights TAAR1's potential involvement in neurodegenerative and neurotraumatic disorders, suggesting it could also be a new therapeutic target for these conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!