SARS-CoV-2 variants raise concern because of their high transmissibility and their ability to evade neutralizing antibodies elicited by prior infection or by vaccination. Here, we compared the neutralizing abilities of sera from 70 unvaccinated COVID-19 patients infected before the emergence of variants of concern (VOCs) and of 16 vaccine breakthrough infection (BTI) cases infected with Gamma or Delta against the ancestral B.1 strain, the Gamma, Delta and Omicron BA.1 VOCs using live virus. We further determined antibody levels against the Nucleocapsid (N) and full Spike proteins, the receptor-binding domain (RBD) and the N-terminal domain (NTD) of the Spike protein. Convalescent sera featured considerable variability in the neutralization of B.1 and in the cross-neutralization of different strains. Their neutralizing capacity moderately correlated with antibody levels against the Spike protein and the RBD. All but one convalescent serum failed to neutralize Omicron BA.1. Overall, convalescent sera from patients with moderate disease had higher antibody levels and displayed a higher neutralizing ability against all strains than patients with mild or severe forms of the disease. The sera from BTI cases fell into one of two categories: half the sera had a high neutralizing activity against the ancestral B.1 strain as well as against the infecting strain, while the other half had no or a very low neutralizing activity against all strains. Although antibody levels against the spike protein and the RBD were lower in BTI sera than in unvaccinated convalescent sera, most neutralizing sera also retained partial neutralizing activity against Omicron BA.1, suggestive of a better cross-neutralization and higher affinity of vaccine-elicited antibodies over virus-induced antibodies. Accordingly, the IC50: antibody level ratios were comparable for BTI and convalescent sera, but remained lower in the neutralizing convalescent sera from patients with moderate disease than in BTI sera. The neutralizing activity of BTI sera was strongly correlated with antibodies against the Spike protein and the RBD. Together, these findings highlight qualitative differences in antibody responses elicited by infection in vaccinated and unvaccinated individuals. They further indicate that breakthrough infection with a pre-Omicron variant boosts immunity and induces cross-neutralizing antibodies against different strains, including Omicron BA.1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320437 | PMC |
http://dx.doi.org/10.3390/ijms23147675 | DOI Listing |
Vaccines (Basel)
September 2024
Department of Medicine, McGill University, Montreal, QC H3A 0E9, Canada.
Vaccines (Basel)
September 2024
Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
Jpn J Infect Dis
September 2024
Department of Infectious Diseases, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan.
Clusters of nosocomial coronavirus disease 2019 (COVID-19) have been reported globally during the recent pandemic. Unfortunately, these clusters negatively affect inpatient morbidity, mortality, and hospital functioning. Using epidemiological data and whole-genome sequencing (WGS) of SARS-CoV-2, this study investigated the outbreak of COVID-19 at a university hospital.
View Article and Find Full Text PDFPLoS Pathog
May 2024
Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!