Recently, it was demonstrated that the expression of was decreased in the endometrium of women suffering from recurrent spontaneous abortion. To investigate the pathological roles of uterine clock genes during pregnancy, we produced conditional deletion of uterine (cKO) mice and found that cKO mice could receive embryo implantation but not sustain pregnancy. Gene ontology analysis of microarray suggested that uterine NK (uNK) cell function was suppressed in cKO mice. Histological examination revealed the poor formation of maternal vascular spaces in the placenta. In contrast to WT mice, uNK cells in the spongiotrophoblast layer, where maternal uNK cells are directly in contact with fetal trophoblast, hardly expressed an immunosuppressive NK marker, CD161, in cKO mice. By progesterone supplementation, pregnancy could be sustained until the end of pregnancy in some cKO mice. Although this treatment did not improve the structural abnormalities of the placenta, it recruited CD161-positive NK cells into the spongiotrophoblast layer in cKO mice. These findings indicate that the uterine clock system may be critical for pregnancy maintenance after embryo implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319876 | PMC |
http://dx.doi.org/10.3390/ijms23147637 | DOI Listing |
Calcif Tissue Int
January 2025
Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:
Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.
Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.
Mol Metab
January 2025
Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:
Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Pharmacy, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
View Article and Find Full Text PDFElife
January 2025
Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
Dystrophin is a critical interacting protein of Nav1.5 that determines its membrane anchoring in cardiomyocytes. Long noncoding RNAs (lncRNAs) are involved in the regulation of cardiac ion channels, while their influence on sodium channels remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!