The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the cell membrane. The nano-hybrids attenuated 97 ± 1.8% of the quorum sensing-regulated virulence factors' production and inhibited the bacterium biofilm formation in an eight-fold lower concentration than the stand-alone gentamicin NSs. The sensitivity to GeN_AC NSs was also confirmed in a real time assay monitoring the bacterial cells elimination, using a quartz crystal microbalance with dissipation. In protein-enriched conditions mimicking the in vivo application, these hybrid nano-antibacterials maintained their antibacterial and antibiofilm effectiveness at concentrations innocuous to human cells. Therefore, the novel GeN_AC NSs with complementary modes of action show potential for the treatment of biofilm infections at a reduced antibiotic dosage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321661 | PMC |
http://dx.doi.org/10.3390/ijms23147632 | DOI Listing |
Int J Mol Sci
July 2022
Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the cell membrane.
View Article and Find Full Text PDFVirol Sin
June 2016
Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
[Image: see text]
View Article and Find Full Text PDFJ Virol
September 2015
Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Unlabelled: We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages.
View Article and Find Full Text PDFJ Virol
June 2013
Department of Medical Biotechnologies, University of Siena, Siena, Italy.
Toscana virus (TOSV) is a phlebovirus, of the Bunyaviridae family, that is responsible for central nervous system (CNS) injury in humans. Previous data have shown that the TOSV NSs protein is a gamma interferon (IFN-β) antagonist when transiently overexpressed in mammalian cells, inhibiting IRF-3 induction (G. Gori Savellini, F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!