An efficient synthetic access to new cationic porphyrin-bipyridine iridium(III) bis-cyclometalated complexes was developed. These porphyrins bearing arylbipyridine moieties at β-pyrrolic positions coordinated with iridium(III), and the corresponding Zn(II) porphyrin complexes were spectroscopically, electrochemically, and electronically characterized. The features displayed by the new cyclometalated porphyrin-bipyridine iridium(III) complexes, namely photoinduced electron transfer process (PET), and a remarkable efficiency to generate O, allowing us to envisage new challenges and opportunities for their applications in several fields, such as photo(catalysis) and photodynamic therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319630 | PMC |
http://dx.doi.org/10.3390/ijms23147606 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
Pneumonia is a prevalent acute respiratory infection and a major cause of mortality and hospitalization, and the urgent demand for a rapid, direct, and highly accurate diagnostic method capable of detecting both () and () arises from their prominent roles as the primary pathogens responsible for pneumonia. Herein, two luminescent iridium complexes with nonoverlapping photoluminescence spectra, iridium(III)-bis [4,6-(difluorophenyl)-pyridinato-N,C'] picolinate (abbreviated as Ir-B) and bis (2-(3,5- dimethylphenyl) quinoline-C2,N') (acetylacetonato) iridium(III)) (abbreviated as Ir-R), were unprecedently proposed to construct a novel wavelength-resolved magnetic multiplex biosensor for simultaneous detection of and based on catalytic hairpin assembly (CHA) signal amplification strategy combined with dye-doped silica nanoparticles. Notably, the proposed wavelength-resolved multiplex biosensor not only exhibits a broad linear range from 50 pM to 10 nM but also demonstrates excellent recovery rates for (96.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex ().
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:
The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand.
View Article and Find Full Text PDFChemistry
December 2024
Waseda University: Waseda Daigaku, Department of Chemistry and Biochemistry, 169-8555, Tokyo, JAPAN.
Single compounds displaying a wide range of luminescent colors are attractive optical materials for sensor applications. In this study, we present the beneficial combination of a cyclometalated iridium(III) complex scaffold and boronic acid units for designing stimuli-responsive luminescent materials with various emission colors. Five iridium(III) complexes bearing a diboronic acid ligand (bpyB2) were synthesized: Ir(C^N)bpyB2 (C^N = 2-phenylpyridine (1), 2-(2,4-difluorophenyl)pyridine (2), 2-(4-methoxyphenyl)pyridine (3), benzo[h]quinoline (4), 1-phenylisoquinoline (5)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!