As one of the most sensitive areas to global environmental change, especially global climate change, the Qinghai-Tibet Plateau is an ideal area for studying global climate change and ecosystems. There are few studies on the analysis of the vegetation's driving factors on the Qinghai-Tibet Plateau based on large-scale and high-resolution data due to the incompetence of satellite sensors. In order to study the long-term vegetation spatiotemporal pattern and its driving factors, this study used the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) to improve the spatial resolution of the GIMMS NDVI3g (8 km) data of the Qinghai-Tibet Plateau in 1990 and 1995 based on the MODIS NDVI (500 m) data. The research on the spatiotemporal pattern and driving factors of vegetation on the Qinghai-Tibet Plateau from 1990 to 2015 was carried out afterward, with combined data including topographic factors, annual average temperature, and annual precipitation. The results showed that there was a strong correlation between the actual MODIS NDVI image and the fused GIMMS NDVI3g image, which means that the accuracy of the fused GIMMS NDVI3g image is reliable and can provide basic data for the accurate evaluation of the spatial and temporal patterns of vegetation on the Qinghai-Tibet Plateau. From 1990 to 2015, the overall vegetation coverage of the Qinghai-Tibet Plateau showed a degrading trend at a rate of -0.41%, and the degradation trend of vegetation coverage was the weakest when the slope was ≥25°. Due to the influence of the policy of returning farmland to forests, the overall degradation trend has gradually weakened. The significant changes in vegetation in 2010 can be attributed to the difference in the spatial distribution of climatic factors such as temperature and precipitation. The area with reduced vegetation in the west was larger than the area with increased vegetation in the east. The effects of temperature and precipitation on the distribution, direction, and degradation level of vegetation coverage were varied by the areal differentiation in different zones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324348PMC
http://dx.doi.org/10.3390/ijerph19148836DOI Listing

Publication Analysis

Top Keywords

qinghai-tibet plateau
28
vegetation coverage
16
driving factors
16
gimms ndvi3g
12
plateau 1990
12
vegetation
10
coverage qinghai-tibet
8
global climate
8
climate change
8
spatiotemporal pattern
8

Similar Publications

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:

Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Species.

Int J Mol Sci

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.

Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.

View Article and Find Full Text PDF

Background: The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. L. (), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!