Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321220 | PMC |
http://dx.doi.org/10.3390/ijerph19148799 | DOI Listing |
Med Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFMed Chem
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibn Zohr University, Agadir, Morocco.
Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Biotechnology, National Institute of Technology, Raipur, 492001, India.
Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Unlabelled: Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.
Objective: With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours.
Prokinetic agents are drugs used to enhance gastrointestinal motility and treat disorders such as Gastroesophageal Reflux Disease (GERD) and gastroparesis. pH-dependent release systems offer targeted drug delivery, allowing prokinetic agents to be released specifically in desired regions of the gastrointestinal tract. This optimizes drug efficacy and minimizes systemic side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!