Orexins, or hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the sleep and wakefulness states. Since their discovery, several lines of evidence have highlighted that orexin neurons regulate a great range of physiological functions, giving it the definition of a multitasking system. In the present review, we firstly describe the mechanisms underlining the orexin system and their interactions with the central nervous system (CNS). Then, the system's involvement in goal-directed behaviors, sleep/wakefulness state regulation, feeding behavior and energy homeostasis, reward system, and aging and neurodegenerative diseases are described. Advanced evidence suggests that the orexin system is crucial for regulating many physiological functions and could represent a promising target for therapeutical approaches to obesity, drug addiction, and emotional stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323672PMC
http://dx.doi.org/10.3390/ijerph19148353DOI Listing

Publication Analysis

Top Keywords

regulation feeding
8
feeding behavior
8
physiological functions
8
orexin system
8
system
6
physiological role
4
role orexinergic
4
orexinergic system
4
system health
4
health orexins
4

Similar Publications

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

The WAVE complex in developmental and adulthood brain disorders.

Exp Mol Med

January 2025

Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.

Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization.

View Article and Find Full Text PDF

Cardiovascular health requires the orchestration of the daily rhythm of blood pressure (BP), which responds to changes in light exposure and dietary patterns. Whether rhythmic light and feeding can modulate daily BP rhythm directly or via modulating intrinsic core clock gene is unknown. Using inducible global knockout mice (iBmal1KO), we explored the impact of rhythmic light, rhythmic feeding, or their combination on various physiological parameters.

View Article and Find Full Text PDF

The ongoing interplay among plants, insects, and bacteria underscores the intricate balance of defense mechanisms in ecosystems. Regurgitant bacteria directly/indirectly impact plant immune responses, but the underlying mechanism is unclear. Here, we focus on the interaction between regurgitant bacteria, diamondback moth (DBM), and plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!