A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions. | LitMetric

The Prostate Imaging Reporting and Data System (PI-RADS) classification is based on a scale of values from 1 to 5. The value is assigned according to the probability that a finding is a malignant tumor (prostate carcinoma) and is calculated by evaluating the signal behavior in morphological, diffusion, and post-contrastographic sequences. A PI-RADS score of 3 is recognized as the equivocal likelihood of clinically significant prostate cancer, making its diagnosis very challenging. While PI-RADS values of 4 and 5 make biopsy necessary, it is very hard to establish whether to perform a biopsy or not in patients with a PI-RADS score 3. In recent years, machine learning algorithms have been proposed for a wide range of applications in medical fields, thanks to their ability to extract hidden information and to learn from a set of data without previous specific programming. In this paper, we evaluate machine learning approaches in detecting prostate cancer in patients with PI-RADS score 3 lesions via considering clinical-radiological characteristics. A total of 109 patients were included in this study. We collected data on body mass index (BMI), location of suspicious PI-RADS 3 lesions, serum prostate-specific antigen (PSA) level, prostate volume, PSA density, and histopathology results. The implemented classifiers exploit a patient's clinical and radiological information to generate a probability of malignancy that could help the physicians in diagnostic decisions, including the need for a biopsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323238PMC
http://dx.doi.org/10.3390/diagnostics12071565DOI Listing

Publication Analysis

Top Keywords

machine learning
12
prostate cancer
12
pi-rads score
12
clinical-radiological characteristics
8
pi-rads lesions
8
patients pi-rads
8
pi-rads
7
prostate
6
learning clinical-radiological
4
characteristics classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!