Various mathematical frameworks play an essential role in understanding the economic systems and the emergence of crises in them. Understanding the relation between the structure of connections between the system's constituents and the emergence of a crisis is of great importance. In this paper, we propose a novel method for the inference of economic systems' structures based on complex networks theory utilizing the time series of prices. Our network is obtained from the correlation matrix between the time series of companies' prices by imposing a threshold on the values of the correlation coefficients. The optimal value of the threshold is determined by comparing the spectral properties of the threshold network and the correlation matrix. We analyze the community structure of the obtained networks and the relation between communities' inter and intra-connectivity as indicators of systemic risk. Our results show how an economic system's behavior is related to its structure and how the crisis is reflected in changes in the structure. We show how regulation and deregulation affect the structure of the system. We demonstrate that our method can identify high systemic risks and measure the impact of the actions taken to increase the system's stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323811PMC
http://dx.doi.org/10.3390/e24071005DOI Listing

Publication Analysis

Top Keywords

complex networks
8
time series
8
network correlation
8
correlation matrix
8
structure
5
evolution cohesion
4
cohesion usa
4
usa financial
4
financial sector
4
sector companies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!