Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a model of interacting singularities of Navier-Stokes equations, named pinçons. They follow non-equilibrium dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can be seen as a generalization of the vorton model of Novikov that was derived for the Euler equations. When immersed in a regular field, the pinçons are further transported and sheared by the regular field, while applying a stress onto the regular field that becomes dominant at a scale that is smaller than the Kolmogorov length. We apply this model to compute the motion of a pair of pinçons. A pinçon dipole is intrinsically repelling and the pinçons generically run away from each other in the early stage of their interaction. At a late time, the dissipation takes over, and the dipole dies over a viscous time scale. In the presence of a stochastic forcing, the dipole tends to orientate itself so that its components are perpendicular to their separation, and it can then follow during a transient time a near out-of-equilibrium state, with forcing balancing dissipation. In the general case where the pinçons have arbitrary intensity and orientation, we observe three generic dynamics in the early stage: one collapse with infinite dissipation, and two expansion modes, the dipolar anti-aligned runaway and an anisotropic aligned runaway. The collapse of a pair of pinçons follows several characteristics of the reconnection between two vortex rings, including the scaling of the distance between the two components, following Leray scaling tc-t.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319063 | PMC |
http://dx.doi.org/10.3390/e24070897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!