Extracellular vesicles (EVs) are a highly heterogeneous population of membranous particles that are secreted by almost all types of cells across different domains of life, including plants. In recent years, studies on plant-derived nanovesicles (PDNVs) showed that they could modulate metabolic reactions of the recipient cells, affecting (patho)physiology with health benefits in a trans-kingdom manner. In addition to its bioactivity, PDNV has advantages over conventional nanocarriers, making its application promising for therapeutics delivery. Here, we discuss the characteristics of PDNV and highlight up-to-date pre-clinical and clinical evidence, focusing on therapeutic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319657PMC
http://dx.doi.org/10.3390/cells11142232DOI Listing

Publication Analysis

Top Keywords

plant-derived nanovesicles
8
therapeutics delivery
8
emergence edible
4
edible plant-derived
4
nanovesicles functional
4
functional food
4
food components
4
components nanocarriers
4
nanocarriers therapeutics
4
delivery potentials
4

Similar Publications

Aim: Plant-derived extracellular vesicles (EVs) are natural nanovesicles for drug delivery. This study isolated and characterised EVs from medicinal plants as delivery vehicles.

Methods: Precipitation method was employed for the isolation and characterised using DLS, SEM, and TEM.

View Article and Find Full Text PDF

Extracellular Vesicle-Like Nanovesicle for Skin Photoaging Therapy.

Biomater Res

December 2024

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.

Ultraviolet (UV) irradiation leads to the degradation of the extracellular matrix and collagen, thereby accelerating skin aging and imposing substantial psychological burden on patients. Current anti-aging strategies are limited and often associated with high costs or strong side effects. Plant-derived extracellular vesicle-like nanovesicles, with advantages such as natural availability and cost-effectiveness, show potential in anti-aging interventions.

View Article and Find Full Text PDF

Plant-derived nanovesicles (PDNVs) and extracellular vesicles (EVs) represent a promising area of research due to their unique properties and potential therapeutic applications. Pinellia ternata (P. ternata) is well-known for its pharmacological properties but the PDNVs and EVs derived from it have been largely understudied.

View Article and Find Full Text PDF

Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted -derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are an experimental class of drug carriers. Alternative sources of EVs are currently being explored to overcome limitations related to their manufacturing from mesenchymal stem cells. In this work, derived EVs were tested as carriers for the widely used chemotherapeutic drug - doxorubicin (DOX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!