Background: Although ceramides are involved in the pathophysiology of cardiovascular disease and other inflammation-associated disorders, there is a paucity of data on the association between plasma ceramides and inflammatory biomarkers in type 2 diabetes mellitus (T2DM). Therefore, we explored whether there was an association between plasma leucine-rich α-2 glycoprotein 1 (LRG1) concentrations (i.e., a novel proinflammatory signaling molecule) and specific plasma ceramides in postmenopausal women with T2DM. Methods: We measured six previously identified plasma ceramides, which have been associated with increased cardiovascular risk [plasma Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), Cer(d18:1/24:0) and Cer(d18:1/24:1)], amongst 99 Caucasian postmenopausal women with non-insulin-treated T2DM (mean age 72 ± 8 years, mean hemoglobin A1c 6.9 ± 0.7%), who consecutively attended our diabetes outpatient service during a 3-month period. Plasma ceramide and LRG1 concentrations were measured with a targeted liquid chromatography-tandem mass spectrometry assay and a Milliplex® MAP human cardiovascular disease magnetic bead kit, respectively. Results: In linear regression analyses, higher plasma LRG1 levels (1st tertile vs. 2nd and 3rd tertiles combined) were associated with higher levels of plasma Cer(d18:1/16:0) (standardized β coefficient: 0.289, p = 0.004), Cer(d18:1/18:0) (standardized β coefficient: 0.307, p = 0.002), Cer(d18:1/20:0) (standardized β coefficient: 0.261, p = 0.009) or Cer(d18:1/24:1) (standardized β coefficient: 0.343, p < 0.001). These associations remained significant even after adjusting for age, body mass index, systolic blood pressure, total cholesterol level, hemoglobin A1c, insulin resistance and statin use. Conclusions: The results of our pilot exploratory study suggest that higher plasma LRG1 concentration was associated with higher levels of specific high-risk plasma ceramide molecules in elderly postmenopausal women with metabolically well-controlled T2DM, even after adjusting for known cardiovascular risk factors and other potential confounding variables.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312999 | PMC |
http://dx.doi.org/10.3390/biom12070943 | DOI Listing |
Clin Transl Med
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
The Riddet Institute, Massey University, Palmerston North 4474, New Zealand.
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal ( = 221) and plasma ( = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies.
View Article and Find Full Text PDFEBioMedicine
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:
Background: Lipid species are emerging as biomarkers for cardiometabolic risk in both adults and children. The genetic regulation of lipid species and their impact on cardiometabolic risk during early life remain unexplored.
Methods: Using mass spectrometry-based lipidomics, we measured 227 plasma lipid species in 1149 children and adolescents (44.
Neuroscience
December 2024
Department of Neurobiology and National Clinical Research Center for Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China. Electronic address:
The brain of patients with Parkinson's disease (PD) was characterized by increased phosphorylation and oligomerization of α-synuclein (α-syn) and altered activity of enzymes regulating α-syn phosphorylation and oligomerization. Whether increased α-syn phosphorylation and oligomerization as well as related enzyme changes can be detected in the plasma of PD patients remains unclear. Here, we showed that human α-syn proteins incubated in PD plasma formed more oligomerized α-syn (O-α-syn) and phosphorylated α-syn (pS-α-syn) than those in healthy control (HC) plasma.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Department of Physiology, University of Kentucky School of Medicine, Lexington, KY. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!