A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. | LitMetric

Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective.

Biomolecules

Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.

Published: June 2022

Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312934PMC
http://dx.doi.org/10.3390/biom12070917DOI Listing

Publication Analysis

Top Keywords

selenoprotein families
8
selenoprotein genes
8
comparative genomics
8
metabolic pathways
8
utilization prokaryotes
8
selenium metabolism
4
metabolism selenoproteins
4
prokaryotes
4
selenoproteins prokaryotes
4
prokaryotes bioinformatics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!