This study examined the relationships between milk yield and diet composition, nutrient intakes, milk composition, and feed use efficiency when concentrates were offered using a feed-to-yield (FTY) approach. The study was conducted on 26 dairy farms in Northern Ireland. Cows ( = 3471) were fully housed and were offered concentrates on an FTY basis. Individual cow genetic information was obtained for 18 herds. Concentrate intakes of individual cows were either obtained from the farms or calculated, while milk yield and milk composition data were obtained from test-day milk recording. Mean test-day milk yields during months 2 to 5 post-calving were calculated for each cow, and cows within each lactation were placed into one of six equal-sized milk yield (kg/cow/day) groups. Diet effects and performance responses to milk yield groups were tested for linear and quadratic effects. Total dry matter intakes increased with increasing milk yield. Milk fat and milk protein concentration declined as milk yield increased, which could be attributed in part to genetics and diet. As milk yield increased, nitrogen and energy use efficiency was improved. However, concentrates offered per kg of energy-corrected milk also increased at higher milk yields, indicating an increased reliance on concentrates for these cows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311736PMC
http://dx.doi.org/10.3390/ani12141771DOI Listing

Publication Analysis

Top Keywords

milk yield
28
milk
16
milk composition
12
dairy farms
8
farms northern
8
northern ireland
8
concentrates offered
8
yield milk
8
test-day milk
8
milk yields
8

Similar Publications

Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.

Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.

View Article and Find Full Text PDF

Yes-associated protein 1 is essential for maintaining lactation via regulating mammary epithelial cell dynamics and secretion capacity.

Int J Biol Macromol

December 2024

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Understanding the physiology and molecular mechanisms of lactogenesis is crucial for enhancing mammalian milk production. Yes-associated protein 1 (YAP1) regulated mammary epithelial cell survival during pregnancy, but its role in lactation maintenance remains unclear. We found that YAP1 was highly expressed in mammary gland across specie, with elevated expression levels during murine gestation and lactation, particularly localized in alveoli epithelial cells.

View Article and Find Full Text PDF

Parmigiano Reggiano protected designation of origin (PDO) cheese inherently exhibits variability due to the characteristics of the production system, contributing to heterogeneity in the composition and properties of milk used in the cheese-making process. This variability leads to variations in cheese yield and nutrient recoveries. The direct measurement of these traits is not feasible in routine practice.

View Article and Find Full Text PDF

Whole genome and transcriptome analyses in dairy goats identify genetic markers associated with high milk yield.

Int J Biol Macromol

December 2024

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China. Electronic address:

Milk production is the most important economic trait of dairy goats and a key indicator for genetic improvement and breeding. However, milk yield is a complex phenotypic trait, and its genetic mechanisms are still not fully understood. This study focuses on dairy goats and non-dairy goats.

View Article and Find Full Text PDF

, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!