Background: Mesenchymal-based therapy has been utilized as a practical approach in the treatment of renal ischemia/reperfusion (I/R) injury. However, low cell retention and survival in the ischemic site have remained challenging issues. To bridge this gap, the integrin receptor-binding RGD peptide-functionalized, s-nitroso-n-acetyl penicillamine (SNAP)-loaded hydrogel was used to transplant Wharton's jelly-mesenchymal stem cells (WJ-MSCs).

Methods: Apart from physicochemical and rheological characterizations that confirmed entangled interlocking β-sheets with nanofibrous morphology, real-time RT-PCR, ROS production, serum biomarker concentrations, and histopathological alterations were explored in a mouse model to assess the therapeutic efficacy of formulations in the treatment of renal I/R injury.

Results: The RGD-functionalized Fmoc-diphenylalanine (Fmoc-FF + Fmoc-RGD) hydrogel supported the spread and proliferation of WJ-MSCs in vivo. Notably, intralesional injection of nitric oxide donor combined with the embedded WJ-MSCs caused superior recovery of renal I/R injury compared to free WJ-MSCs alone in terms of histopathological scores and renal function indices. Compared to the I/R control group, oxidative stress and inducible nitric oxide synthase (iNOS) expression biomarkers showed a significant decline, whereas endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) expression exhibited a significant increment, indicating regeneration of the injured endothelial tissue.

Conclusion: The findings confirmed that the hydrogels containing WJ-MSCs and nitric oxide donors can promote the regeneration of renal I/R injuries by increasing angiogenic factors and cell engraftment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327234PMC
http://dx.doi.org/10.1186/s13287-022-03045-1DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
renal i/r
12
integrin receptor-binding
8
renal ischemia/reperfusion
8
treatment renal
8
i/r injury
8
oxide synthase
8
renal
6
nitric
5
oxide
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!