Quantitative evaluation of drug dissolution characteristics based on mathematical models is essential to understand and predict a particular drug release profile. In this study, model-dependent evaluation of the dissolution kinetics of reference and five test products (25-mg, immediate-release (IR) tablets) of an antihypertensive drug, carvedilol, was carried out using the DDSolver program. The effects of pH (pH 1.2, 4.5, and 6.8) and various media with/without 0.5% (w/v) anionic, cationic, and nonionic surfactants (sodium lauryl sulfate (SLS), hexadecyltrimethylammonium bromide (CTAB), and polysorbate 80) on the dissolution kinetics of the bioequivalent IR products of carvedilol were investigated. The Weibull-1 model was fitted successfully to the dissolution data of all products at pH 1.2 and pH 4.5, as well as in the pH 6.8 medium with CTAB according to the model goodness of fit (r = 0.981-0.999, AIC = 14.5-42.6, MSC = 1.99-5.25). Model fitting produced good fits to Gompertz-1 for all products at pH 6.8 without a surfactant (r = 0.975-0.998, AIC = 28.3-55, MSC = 2.53-5.82). For pH 6.8 media containing SLS or polysorbate 80, Logistic-2 was fitted successfully to the dissolution data of all products (r = 0.974-0.999, AIC = 20.9-52.1, MSC = 1.90-5.69). Overall, the model-dependent analysis of in vitro dissolution data indicated in vitro equivalence of the reference and test products of carvedilol in each medium in terms of kinetic models, suggesting that it would have an important role in developing generic drug products of the BCS class II drug carvedilol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-022-02355-0 | DOI Listing |
Alzheimers Dement
December 2024
Queen Mary University of London, London, United Kingdom.
Background: Research has demonstrated that spousal loss through widowhood or divorce are associated with an increased risk of dementia and deteriorated cognitive performance. This is likely due to high levels of stress characteristic of these life events. Evidence suggests that neuropathology typically seen in Alzheimer's disease, for example, β-amyloid (Aβ), may be a by-product of chronic stress.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography, University of Sindh, Jamshoro, Sindh, Pakistan.
This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.
View Article and Find Full Text PDFInt J Pharm
December 2024
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA.
Rat pharmacokinetic studies are commonly utilized in early discovery to support absorption, distribution, metabolism, and excretion optimization of active pharmaceutical ingredients (APIs). The aim of this work was to compare exposures from fit-for-purpose oral suspension and solution formulations in rats to guidance provided by the refined Developability Classification System (rDCS) with respect to identifying potential limits to oral absorption, formulation strategy selection, and to optimize oral bioavailability (BA). This investigation utilized six diverse APIs covering a large range of biorelevant solubility, metabolic stability, and oral BA in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!