Magnetically modified biochar, with a rougher surface and more positive surface charge, may interact with microplastics (MPs) after being applied to soil, potentially altering the fate and transport of MPs in porous media. In this study, the transport and retention behavior of polystyrene microplastics (PSMPs) in a sandy porous media mixed with biochar/FeO modified biochar (FeO-biochar) was investigated under various chemical conditions (humic acid (HA), ionic strength (IS) and cationic types (Na/Ca)). The results showed that the addition of biochar and FeO-biochar can hinder the transport of PSMPs in porous media without HA, and that FeO-biochar was more effective in inhibiting the transport of PSMPs through electrostatic adsorption and complexation, with an optimum retention efficiency of 92.36 %. HA significantly attenuated the retention of PSMPs in both porous media through electrostatic repulsion, steric resistance and competitive adsorption under 1 mM Na solutions, and the mobility of PSMPs in FeO-biochar/sand was enhanced more significantly than in biochar/sand with the increase of HA concentration. IS significantly inhibited the transport of PSMPs in both porous media in the absence of HA, but there was an antagonistic effect of HA and IS on the transport of PSMPs in the presence of HA, with the facilitative effect of HA being stronger than the inhibitory effect of IS. Ca was consistently more effective in inhibiting the transport of PSMPs than Na under all test conditions, and HA promoted the transport of PSMPs in all Na solutions, while it inhibited the transport of PSMPs in high IS (10 mM) with Ca solutions. In addition, HA, FeO-biochar and PSMPs tend to form larger aggregates under the complex interactions of Ca, leading to increased retention of PSMPs in porous media. The two-site kinetic retention models suggested that the retention of PSMPs in porous media with biochar was predominantly reversible attachment effect, while retention in porous media with FeO-biochar was predominantly an irreversible straining effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157576 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il City, Saudi Arabia.
Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:
Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble 38000, France.
Sci Rep
December 2024
College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
In order to promote low-carbon sustainable development in the ecological environment and improve the efficiency of hydrogen and natural gas energy utilization, this project carried out research on the explosive effects of different thicknesses of ordered porous media on the hydrogen-methane gas mixture. A detailed discussion was conducted based on the critical quenching hydrogen blending ratio under the thicknesses of 50 mm and 60 mm of ordered porous media. The results indicate that the critical quenching hydrogen blending ratio is 9% for a thickness of 50 mm and 20% for a thickness of 60 mm, indicating that greater thickness enhances flame suppression capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!