Materials exhibiting bulk superconductivity along with magnetoresistance (MR) in their normal state have emerged as suitable candidates for topological superconductivity. In this article, we report a flux free method to synthesize single crystal of topological superconductor candidate SnAu. The phase purity and single crystalline nature are confirmed through various characterizations viz. x-ray diffraction, field emission scanning electron microscopy, selected area electron diffraction, and transmission electron microscopy. Chemical states of the constituent element viz. Sn and Au are analysed through x-ray photoelectron spectroscopy. Superconductivity in synthesized SnAu single crystal is evident formplot, for which the critical field () is determined throughplot at 2 K i.e. just below critical temperature. A positive MR is observed inmeasurements at different temperatures above, viz. at 3 K, 5 K, 10 K and 20 K. Further, the magnetoconductivity (MC) is analysed by using Hikami-Larkin-Nagaoka formalism, which signifies the presence of weak antilocalization (WAL) effect in SnAu. Angle dependent magneto-transport measurement has been performed to detect the origin of observed WAL effect in SnAu single crystal. Normalized MC vscosplot shows presence of topological surface states in the studied system. It is evident that SnAu is a 2.6 K topological superconductor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac8463 | DOI Listing |
J Am Chem Soc
December 2024
School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China.
Herein, SUMO-LUMO inversion (SLI) radicals - were designed by the combination of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical and pyridinium derivatives (electron-withdrawing groups) for the first time. The energy of the LUMO lies below that of the SUMO, which deviated from the Aufbau principle as an alternative electronic configuration beyond the well-established SOMO-HOMO inversed system. Thus, for SLI radicals, the injection of one extra electron preferred to occupy the LUMO rather than the SUMO, giving diradicals, one of which had been fully confirmed by single crystal analysis, VT-NMR and VT-EPR experiments, as well as DFT calculations.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.
View Article and Find Full Text PDFJACS Au
December 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
The chemical similarities between trivalent actinides [An(III)] and lanthanides [Ln(III)] present a significant challenge in differentiating and separating them, which is a key step toward closing the nuclear fuel cycle. However, the existing separation approaches commonly suffer from demerits such as inadequate separation factors, limited stripping efficiency, and undesired coextraction. In this study, a novel unsymmetrical phenanthroline-derived amide-triazine (Et-Tol-CyMe-ATPhen) extractant was first designed and then screened with theoretical computation.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.
View Article and Find Full Text PDFOrganometallics
December 2024
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
stabilization of known, but solution unstable, methylidene complex [Ir(Bu-PONOP)(=CH)][BAr ] allows single-crystal to single-crystal solid/gas reactivity associated with the {Ir=CH} group to be studied. Addition of H results in [Ir(Bu-PONOP)(H)][BAr ]; exposure to CO forms iridium(I) carbonyl [Ir(Bu-PONOP)(CO)][BAr ], and reaction with NH gas results in the formation of methylamine complex [(Bu-PONOP)Ir(NHMe)][BAr ] via an aminocarbene intermediate. Periodic density functional theory and electronic structure analyses confirm the Ir=CH bond character but with a very low barrier to rotation around the Ir=CH bond.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!