A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous preparation of a nontoxic magnetic fluid as a dual-mode contrast agent for MRI. | LitMetric

Continuous preparation of a nontoxic magnetic fluid as a dual-mode contrast agent for MRI.

Biomater Adv

College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.. Electronic address:

Published: August 2022

Ultrasmall nanoparticle contrast agents provide dual-mode MRI. However, the application of ultrasmall nanoparticle contrast agents is limited by low manufacturing outputs and cumbersome preparation processes. Herein, we report a novel continuous-flow coprecipitation method for the preparation of the FeO nanoparticles magnetic fluid (CFCPFe) coated with ultrasmall cysteine-terminated polymethacrylic acid (Cys-PMAA). The preparation process is more coherent, simpler, and less expensive. Compared with magnetic fluids prepared by the conventional method (Cys-PMAA@FeO), CFCPFe has smaller particle sizes (3.27 ± 0.93 nm). Moreover, CFCPFe demonstrates excellent stability for >180 days with different pH values (pH = 2-12) and salt concentrations (up to 2 mol/L). In addition, HEK293T cytotoxicity tests, hemolysis tests, and H&E tissue sections show excellent in vitro and in vivo biocompatibility. In vitro magnetic resonance imaging (MRI) at 1.5 T shows that the r value (50.51 mM·s) of CFCPFe is slightly lower than that of Combidex (r = 65 mM·s) and that the r value (9.54 mM·s) is 2.7 times higher than that of Gd-DTPA (r = 3.5 mM·s). Finally, in vivo imaging shows that CFCPFe reaches the tumor region of the mouse liver cancer model, and a small tumor can be observed in dual-mode imaging. This work offers an effective method for the preparation of a low-cost, stable, and biocompatible ultrasmall contrast agent exhibiting a strong magnetic-imaging effect for dual-mode imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213004DOI Listing

Publication Analysis

Top Keywords

magnetic fluid
8
contrast agent
8
ultrasmall nanoparticle
8
nanoparticle contrast
8
contrast agents
8
method preparation
8
dual-mode imaging
8
cfcpfe
5
continuous preparation
4
preparation nontoxic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!