Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and advanced interstitial lung disease with poor prognosis. AHNAK nucleoprotein 2 (AHNAK2) is a macromolecular protein that is important for cell migration and muscle membrane repair. The protein acts via epithelial-mesenchymal transition (EMT), which is a key mechanism in the pathogenesis of IPF. However, very few studies have elucidated the effect of AHNAK2 in the development of IPF. Therefore, we aimed to determine the role of AHNAK2 in IPF development.
Methods: C57BL/6 mice were induced with bleomycin, while A549 and Beas-2b pulmonary epithelial cell lines were treated with TGF-β1 to induce IPF model. The expression of AHNAK2 was detected using immunohistochemistry staining in vivo, and real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB) in vitro. C57BL/6 mice were injected with adeno-associated virus (AAV)-sh NC or AAV-sh AHNAK2 and the pulmonary function and EMT marker expression were measured. The migratory abilities of the two transforming growth factor beta 1 (TGF-β1)-induced cell lines were examined using wound-healing and Transwell assays after transfection with si-NC, si-AHNAK2-1 and -2. EMT marker expression was detected using RT-qPCR and WB. Smad3 and phosphorylated-Smad3 of the two cells were examined using WB. Following Smad3 inhibition by Smad3 phosphorylation inhibitor (SIS3), TGF-β1-induced cell migration and EMT marker expression were evaluated again after different transfections.
Results: AHNAK2 expression was higher in the IPF model than in the normal model in vivo and in vitro. Partial inhibition of AHNAK2 suppressed the EMT process and improved pulmonary ventilation and compliance in the mouse model of IPF. Similarly, knockdown of AHNAK2 suppressed the migration of pulmonary epithelial cells and reversed EMT. Furthermore, Smad3 of the two TGF-β1-induced cell lines was not activated when AHNAK2 was inhibited. When SIS3 inhibited the activation of Smad3, the suppression of AHNAK2 had no effect on A549 and Beas-2b, regardless of TGF-β1 induction.
Conclusions: Inhibition of AHNAK2 alleviates pulmonary fibrosis and partially reverses EMT by inhibiting the TGF-β1/Smad3 signaling pathway. Therefore, AHNAK2 is a potential therapeutic target for IPF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.3442 | DOI Listing |
Pharmaceutics
January 2025
School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.
View Article and Find Full Text PDFPathogens
January 2025
Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes.
View Article and Find Full Text PDFJ Clin Med
January 2025
2nd Pulmonary Department, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
: Long-term lung sequelae in severe COVID-19 survivors, as well as their treatment, are poorly described in the current literature. : To investigate lung fibrotic sequelae in survivors of severe/critical COVID-19 pneumonia and their fate according to a "non-interventional" approach. : Prospective study of the above COVID-19 survivors after hospital discharge from March 2020 to October 2022.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a median survival of 3-5 years. Antifibrotic therapies like pirfenidone and nintedanib slow progression, but the outcomes vary. Gender may influence disease presentation, progression, and response to treatment.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!