Lithium sulfur batteries (LSBs) are regarded as one of the most promising energy storage devices due to the high theoretical capacity and energy density. However, the shuttling lithium polysulfides (LiPSs) from the cathode and the growing lithium dendrites on the anode limit the practical application of LSBs. To overcome these challenges, a novel three-dimensional (3D) honeycombed architecture consisting of a local interconnected CoO successfully assembled into a scalable modified layer through mutual support, which is coated on commercial separators for high-performance LSBs. On the basis of the 3D honeycombed architecture, the modified separators not only suppress effectively the "shuttle effects" but also allow for fast lithium-ions transportation. Moreover, the theoretical calculations results exhibit that the collaboration of the exposed (111) and (220) crystal planes of CoO is able to effectively anchor LiPSs. As expected, LSBs with 3D honeycombed CoO modified separators present a reversible specific capacity with 1007 mAh g over 100 cycles at 0.1 C. More importantly, a high reversible capacity of 808 mAh g over 300 cycles even at 1 C is also acquired with the modified separators. Therefore, this proposed strategy of 3D honeycombed architecture CoO modified separators will give a new route to rationally devise durable and efficient LSBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c07263 | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.
C aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biological Science and Engineering, Chuzhou University, Chuzhou, Anhui, China.
The synergistic effect of natural guar gum (GG), konjac gum (KGM) and sodium 2-oxopropanoic acid sodium (2-OAS) to designed a novel physical cross-linked three-dimensional network structure GG@2-OAS@KGM as a carrier of active microorganisms for mold and yeast sensitive detection. At the ratio of 6:2:2 (w/w/w), GG@2-OAS@KGM possessed a uniform porous structure. After treatment for 120 h, the hydrogel exhibits higher water holding capacity (WHC, 71.
View Article and Find Full Text PDFChem Sci
December 2024
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.
View Article and Find Full Text PDFNPP Digit Psychiatry Neurosci
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.
Reinforcement learning studies propose that decision-making is guided by a tradeoff between computationally cheaper model-free (habitual) control and costly model-based (goal-directed) control. Greater model-based control is typically used under highly rewarding conditions to minimize risk and maximize gain. Although prior studies have shown impairments in sensitivity to reward value in individuals with frequent alcohol use, it is unclear how these individuals arbitrate between model-free and model-based control based on the magnitude of reward incentives.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!