In order to improve energy absorption capacity of tubes under axial compression, this work introduces an octagon tube patterned by curved Miura origami pattern and aims at suppressing global buckling of the tube via an appropriate fold line scheme. By categorizing the fold lines of the tube into two types (hinge-like lines and continuous lines) and allocating them to different positions, four arrangement schemes of the lines are developed. Through numerical comparison in force-displacement curve, stress distribution and lateral deformation capacity among four 3-level patterned tubes under different schemes, Scheme 4 (inclined valley lines as hinge-like lines and the others as continuous lines) is found to outperform the others in suppressing global buckling by reducing the magnitude of lateral deformation by up to 59.9% and by delaying the occurrence of global buckling by up to 35.9% compared with the other schemes. To step further, the scheme is applied in a long tube and geometrically different tubes are compared. The results prove that the scheme is potentially an effective way to alleviate buckling instability of a long tube when appropriately designed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321408 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270228 | PLOS |
Sci Rep
October 2024
Department of Structural Engineering and Geotechnics, Széchenyi István University, Egyetem Tér 1, Győr, 9026, Hungary.
The utilization of cold-formed thin-walled members as structural members has gained significant popularity due to their advantages in fabrication, cost-effectiveness, and transportation convenience. However, the reduced thickness of the used sections poses challenges such as global, local, and distortional member buckling, leading to a decrease in their axial strength. This study focuses on addressing these challenges by connecting the channels together using screws as an alternative to welding, considering the cost, time, and ease of implementation.
View Article and Find Full Text PDFCurr Biol
November 2024
Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Electronic address:
The glabrous skin of the rhinarium (naked nose) of many mammalian species exhibits a polygonal pattern of grooves that retain physiological fluid, thereby keeping their nose wet and, among other effects, facilitating the collection of chemosensory molecules. Here, we perform volumetric imaging of whole-mount rhinaria from sequences of embryonic and juvenile cows, dogs, and ferrets. We demonstrate that rhinarial polygonal domains are not placode-derived skin appendages but arise through a self-organized mechanical process consisting of the constrained growth and buckling of the epidermal basal layer, followed by the formation of sharp epidermal creases exactly facing an underlying network of stiff blood vessels.
View Article and Find Full Text PDFThe real juncture between corrugated steel webs (CSWs) and flanges follows a multi-segmented line, distinct from that of flat steel webs. Classic methods may yield significant deviations in predicting the elastic global shear buckling capacity of CSWs of various scales due to their failure to consider real boundary constraints. Therefore, a universally applicable formula for calculating the elastic critical global shear buckling stress of CSWs, which accounts for real boundary conditions, is proposed.
View Article and Find Full Text PDFAm J Ophthalmol
October 2024
BayCare Clinic Eye Specialists (A.G.E.), Aurora BayCare Medical Center, Green Bay, Wisconsin, USA; Department of Ophthalmology (A.G.E.), Faculty of Medicine, Cairo University, Cairo, Egypt.
Polymers (Basel)
September 2024
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy.
Composite materials, particularly carbon fiber-reinforced polymers (CFRPs), have become a cornerstone in industries requiring high-performance materials due to their exceptional mechanical properties, such as high strength-to-weight ratios, and their inherent lightweight nature. These attributes make CFRPs highly desirable in aerospace, automotive, and other advanced engineering applications. However, the compressive behavior of CFRP structures remains a challenge, primarily due to the material sensitivity to structural instability, leading to matrix cracking and premature failure under compressive loads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!