Development of an In-Source Peltier Heater for Pulled Capillary Nanospray Emitter Columns.

J Am Soc Mass Spectrom

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.

Published: September 2022

Column compartments in liquid chromatography (LC) systems house the LC columns. These compartments are responsible for maintaining a suitable column environment for achieving optimal chromatographic performance. However, the advancements in instrument and column designs demand newer technologies. It is a well-established concept that decreasing the dead volume of the column improves the column resolution, thereby providing enhanced chromatographic separation. One of the major contributors in the dead volume is the line connecting the column in the LC compartment to the ion source in the mass spectrometer. Using in-source emitter columns is one strategy to enhance the resolution. However, ion sources without temperature control are not suitable for columns that are used at high temperatures. In this work, we are introducing a nano electrospray ionization source with an integrated Peltier heater designed for pulled capillary nanospray emitter columns. Although the performance of the device is demonstrated by showing the isomeric separation of permethylated glycans using a mesoporous graphitized carbon packed pulled capillary emitter, it can easily be paired with any nanospray emitter column that requires temperature control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.2c00167DOI Listing

Publication Analysis

Top Keywords

pulled capillary
12
nanospray emitter
12
emitter columns
12
peltier heater
8
capillary nanospray
8
dead volume
8
temperature control
8
column
7
emitter
5
columns
5

Similar Publications

Flexible disk ultramicroelectrode: Facile preparation and high-resolution scanning electrochemical microscopy imaging.

Anal Chim Acta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China. Electronic address:

Background: Scanning electrochemical microscopy (SECM) is a kind of scanning probe technology that enables the obtainment of surface morphology and electrochemical information by recording changes in Faraday current triggered by the movement of probe.

Results: In this work, flexible disk ultramicroelectrode (UME) with highly repeatable geometry are fabricated through a simple and universal strategy that involves vacuum pulling the glass capillaries inserted with platinum wire (gold wire, carbon fiber, etc.), followed by a rapidly heated sealing and polishing process.

View Article and Find Full Text PDF

Electrochemical Behaviors of Ultramicro Triangular Pipettes.

Anal Chem

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Ultramicro pipettes with circular orifices have practically become common probes in exploring the microscopic world, yet the versatility of differently shaped pipettes is undermined in the pore family. Herein, ultramicro triangular pipettes with a pseudotriangular-shaped orifice were fabricated by laser-pulling triangular quartz capillaries and characterized by microscopic and electrochemical methods. Then, the differences in the electrochemical behaviors of triangular and circular pores were revealed through experiments and simulations.

View Article and Find Full Text PDF

Mechanical ventilation, essential for critically ill patients, contrasts with natural respiration, primarily due to differences in pleural pressure ( ). Natural inspiration decreases , pulling the lungs away from the thoracic wall, whereas positive pressure inspiration increases , pushing the lungs against the thoracic wall. This shift has several consequences.

View Article and Find Full Text PDF

The purpose of this work was to evaluate the performance of CoVarScan, a multiplex fragment analysis approach, in identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of the Omicron lineage rapidly and accurately. The ability to identify variants with high fidelity and low turnaround time is important both epidemiologically and clinically for pandemic monitoring and therapeutic monoclonal antibody (mAb) selection. Currently, the gold-standard test for this task is whole-genome sequencing (WGS), which is prohibitively expensive and/or inaccessible due to equipment requirements for many laboratories.

View Article and Find Full Text PDF

The flow of the water film on solid surface depended on the film Reynolds number and wind speed. Moreover, environmental factors had an impact on the flow process. This study explored how surface wettability impacts the stability and detachment of water film under varying conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!