Repetitive Thiazolidine Deprotection Using a Thioester-Compatible Aldehyde Scavenger for One-Pot Multiple Peptide Ligation.

Angew Chem Int Ed Engl

Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

Published: September 2022

Strategies for one-pot peptide ligation enable chemists to access synthetic proteins at a high yield in a short time. Herein, we report a novel one-pot multi-segments ligation strategy using N-terminal thiazolidine (Thz) peptide and a newly designed formaldehyde scavenger. Among the designed 2-aminobenzamide-based aldehyde scavengers, 2-amino-5-methoxy-N',N'-dimethylbenzohydrazide (AMDBH) can remarkably convert Thz into unprotected cysteine at pH 4.0. Furthermore, AMDBH degrades Thz at a considerably low rate at pH 7.5, and thioester degradation caused by this scavenger is negligible. As a result, we have developed an efficient one-pot peptide ligation strategy by simply repetitively changing the pH with AMDBH. Finally, we synthesize mono-ubiquitinated histone H2A.Z (209 amino acids) via AMDBH-mediated one-pot four-segment peptide ligation in good yield.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202206240DOI Listing

Publication Analysis

Top Keywords

peptide ligation
16
one-pot peptide
8
ligation strategy
8
one-pot
5
peptide
5
ligation
5
repetitive thiazolidine
4
thiazolidine deprotection
4
deprotection thioester-compatible
4
thioester-compatible aldehyde
4

Similar Publications

HUVECs-derived exosomes increase neovascularization and decrease limb necrosis in hindlimb ischemia.

Narra J

December 2024

Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.

View Article and Find Full Text PDF

Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis.

Funct Integr Genomics

January 2025

Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.

Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.

View Article and Find Full Text PDF

Removable dialkoxybenzyl linker for enhanced HPLC purification of peptide hydrazides.

Org Biomol Chem

January 2025

Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.

High-performance liquid chromatography (HPLC) plays a crucial role in purifying peptides and proteins and monitoring their reactions. Peptide hydrazides are widely employed intermediates in modern peptide/protein chemistry. However, they often exhibit peak tailing during HPLC purification and analysis.

View Article and Find Full Text PDF

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

IL-6 and PD-1 antibody blockade combination therapy regulate inflammation and T lymphocyte apoptosis in murine model of sepsis.

BMC Immunol

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Republic of Korea.

Background: Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!