Sex chromosomes in poikilothermal vertebrates are characterized by rapid and diverse evolution at the species or population level. Our previous study revealed that the Taiwanese frog Odorrana swinhoana (2n = 26) has a unique system of multiple sex chromosomes created by three sequential translocations among chromosomes 1, 3, and 7. To reveal the evolutionary history of sex chromosomes in the Odorrana species complex, we first identified the original, homomorphic sex chromosomes, prior to the occurrence of translocations, in the ancestral-type population of O. swinhoana. Then, we extended the investigation to a closely related Japanese species, Odorrana utsunomiyaorum, which is distributed on two small islands. We used a high-throughput nuclear genomic approach to analyze single-nucleotide polymorphisms and identify the sex-linked markers. Those isolated from the O. swinhoana ancestral-type population were found to be aligned to chromosome 1 and showed male heterogamety. In contrast, almost all the sex-linked markers isolated from O. utsunomiyaorum were heterozygous in females and homozygous in males and were aligned to chromosome 9. Morphologically, we confirmed chromosome 9 to be heteromorphic in females, showing a ZZ-ZW sex determination system, in which the W chromosomes were heterochromatinized in a stripe pattern along the chromosome axis. These results indicated that after divergence of the two species, the ancestral homomorphic sex chromosome 1 underwent highly rapid and diverse evolution, i.e., sequential translocations with two autosomes in O. swinhoana, and turnover to chromosome 9 in O. utsunomiyaorum, with a transition from XY to ZW heterogamety and change to heteromorphy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520967 | PMC |
http://dx.doi.org/10.1111/dgd.12800 | DOI Listing |
Anim Genet
February 2025
Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Gongzhuling, China.
The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.
View Article and Find Full Text PDFAsian J Androl
January 2025
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected.
View Article and Find Full Text PDFAlthough sex determination is a fundamental process in vertebrate development, it is very plastic. Diverse genes became major sex determinants in teleost fishes. Deciphering how individual sex-determining genes orchestrate sex determination can reveal new actors in sexual development.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de México, México.
Tequila bats (genus Leptonycteris) have gained attention for their critical role in pollinating different plant species, especially Agave spp. and columnar cacti. Leptonycteris nivalis is the largest nectar-feeding bat in the Americas, and the females exhibit migratory behavior during the breeding season.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Sex is an important factor that contributes to both clinical and biological heterogeneity in Alzheimer's disease (AD), but the regulatory mechanisms underlying sex differences in AD are still not well understood. DNA methylation (DNAm) is an epigenetic modification that regulates gene transcription and is known to be involved in AD. However, due to analytical and biological complexity, few previous DNAm studies analyzed the X chromosome, where many genes influencing cognitive abilities and immune functions are located.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!