Children and adolescents with high-risk (metastatic and relapsed) solid tumors have poor outcomes despite intensive multimodal therapy, and there is a pressing need for novel therapeutic strategies. Adoptive cellular therapy (ACT) has demonstrated activity in multiple adult cancer types, and opportunity exists to expand the use of this therapy in children. Employment of immunotherapy in the pediatric population has realized only modest overall clinical trial results, with success thus far restricted mainly to antibody-based therapies and chimeric antigen receptor T-cell therapies for lymphoid malignancy. As we improve our understanding of the orchestrated cellular and molecular mechanisms involved in ACT, this will provide biologic insight and improved ACT strategies for pediatric malignancies. This review focuses on ACT strategies outside of chimeric antigen receptor T-cell therapy, including completed and ongoing clinical trials, and highlights promising preclinical data in tumor-infiltrating lymphocytes that enhance the clinical efficacy of ACT for high-risk pediatric solid tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847472PMC
http://dx.doi.org/10.1097/PPO.0000000000000603DOI Listing

Publication Analysis

Top Keywords

solid tumors
12
chimeric antigen
12
adoptive cellular
8
cellular therapy
8
pediatric solid
8
therapy children
8
antigen receptor
8
receptor t-cell
8
therapy
6
pediatric
4

Similar Publications

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects.

Cell Mol Life Sci

January 2025

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.

View Article and Find Full Text PDF

Transforming Bacterial Pathogens into Wonder Tools in Cancer Immunotherapy.

Mol Ther

January 2025

College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea. Electronic address:

Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared to conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments.

View Article and Find Full Text PDF

Objective: In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules to enhance diagnostic accuracy.

Methods: Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People's Hospital, etc.

View Article and Find Full Text PDF

Purpose: Adrenal vascular tumors are mainly represented by adrenal cavernous hemangiomas (ACHs) and adrenal cystic lymphangiomas (ACLs). Their radiological features often overlap with malignant tumors, therefore ruling out malignancy becomes mandatory. We analyzed clinical, radiological, and histopathological data to identify specific characteristics of these tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!