spp. are responsible for up to 1 million new cases each year. The current therapeutic arsenal against is largely inadequate, and there is an urgent need for better drugs. Trypanothione reductase (TR) represents a druggable target since it is essential for the parasite and not shared by the human host. Here, we report the optimization of a novel class of potent and selective TR inhibitors realized through a concerted effort involving X-ray crystallography, synthesis, structure-activity relationship (SAR) investigation, molecular modeling, and phenotypic assays. 5-Nitrothiophene-2-carboxamides , , and were among the most potent and selective TR inhibitors identified in this study. and displayed leishmanicidal activity in the low micromolar range coupled to SI > 50. Our studies could pave the way for the use of TR inhibitors not only against leishmaniasis but also against other trypanosomatidae due to the structural similarity of TR enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.2c00325 | DOI Listing |
Chem Biodivers
January 2025
Universidade Federal de Pernambuco Centro de Biociencias, Centro de Biociências, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901, 50670-901, Recife, BRAZIL.
Leishmaniasis is a neglected disease caused by parasites of the genus Leishmania sp. that causes approximately 1 million cases and 650,000 deaths annually worldwide. Its treatment has several limitations mainly due to high toxicity and clinical resistance, and the search for alternatives is highly desirable.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2024
Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.
Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.
View Article and Find Full Text PDFChem Biodivers
December 2024
Departamento de Ingeniería Agrícola y Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Antioquia, Colombia.
Coumarin-chalcone hybrids are promising compounds that could be used as lead structures in the fight against parasitic diseases. In this work, 16 hybrids of coumarin-chalcone (3-cinnamoyl-2H-chromen-2-ones) were synthesized, and their in vitro biological activity was evaluated against intracellular amastigotes of Leishmania braziliensis and Trypanosoma cruzi, as well as their cytotoxicity in the U-937 cell line. Compounds (E)-3-(3-(3-ethoxy-4-hydroxyphenyl)acryloyl)-7-methoxy-2H-chromen-2-one (H) and (E)-7-(diethylamino)-3-(4-(methoxyphenyl)acryloyl)-2H-chromen-2-one (H) showed the highest antileishmanial activity with EC values of 18.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Pharmacy, Federal University of Ouro Preto, 35402-163 Ouro Preto, MG, Brazil. Electronic address:
Chagas disease (CD) is a life-threatening illness caused by the protozoan Trypanosoma cruzi and there are only two drugs currently available for pharmacotherapy of this neglected infection (benznidazole and nifurtimox). Their limited efficacy in chronic phase of the disease, problems of toxicity and the growing resistance by the protozoan are directly associated to high rates of drug discontinuation by the patients. In the context of the search for new trypanocidal drug candidates, our group has been working with the chemical manipulation of eugenol to obtain new agents active against T.
View Article and Find Full Text PDFChemMedChem
October 2024
Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade federal da Paraíba, 58051-900, João Pessoa - PB, Brazil.
Leishmaniasis, caused by Leishmania parasites, presents a major global health challenge due to limitations of existing treatments, including toxicity, side effects, drug resistance, and high costs. This study utilized the MuDRA (Multi-Descriptor Read Across) model for virtual screening to identify potential anti-Leishmania infantum compounds. A set of 15 terpenes and steroids was screened, leading to the identification of four promising candidates-lupeol, xylodiol, morolic acid, and trachyloban-18-oic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!