Folic acid-functionalized L-cys/ZnS:O nanoparticles for homologous targeting and photodynamic therapy of tumor cells.

J Mater Chem B

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.

Published: August 2022

AI Article Synopsis

  • The combination of photodynamic therapy (PDT) and fluorescence imaging is an innovative approach to theranostics, but traditional photosensitizers (PSs) face challenges like low water solubility and limited targeting abilities.
  • L-cys/ZnS:O (LZS) nanoparticles were engineered with folic acid to improve entry into tumor cells and concentration near the cell nucleus, enhancing effectiveness.
  • The resulting FA@LZS nanoparticles showed reduced cytotoxicity, improved water solubility, and better production of reactive oxygen species (ROS), effectively targeting and killing HepG2 cancer cells, paving the way for more advanced and targeted PSs.

Article Abstract

The combination of photodynamic therapy (PDT) and fluorescence imaging provides a promising approach to theranostics. However, traditional photosensitizers (PSs) have low water solubility and lack active targeting ability. Our ingenious design used L-cys/ZnS:O (LZS) nanoparticles (NPs) modified with folic acid (FA), allowing them to easily enter tumor cells and accurately gather around the nucleus of cancer cells. L-Cysteine were used as intermediates, ZnS:O quantum dots and FA could be connected by a solid-state method and a coupling reaction. In doing so, the cytotoxicity of LZS NPs was further reduced, while the hydrophilicity and dispersibility were improved. Moreover, the as-synthesized FA@LZS NPs had a higher generation of reactive oxygen species (ROS) than commercial Ce6, and they killed HepG2 cells specifically . These findings give a clear way for the development of advanced PSs with homologous labeling functions. A template for NPs or other fluorophores modified by targeting groups is also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00719cDOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
tumor cells
8
folic acid-functionalized
4
acid-functionalized l-cys/znso
4
l-cys/znso nanoparticles
4
nanoparticles homologous
4
homologous targeting
4
targeting photodynamic
4
therapy tumor
4
cells
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers.

View Article and Find Full Text PDF

Development of optical microneedle-lens array for photodynamic therapy.

Biomed Microdevices

January 2025

Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.

Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!