A flexible, robust and multifunctional montmorillonite/aramid nanofibers@MXene electromagnetic shielding nanocomposite with an alternating structure for enhanced Joule heating and fire-resistant protective performance.

Nanoscale

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Published: August 2022

With the rapidly increasing development of portable devices and flexible electronic devices, multifunctional composites with excellent mechanical strength, great electromagnetic interference shielding, great Joule heating performance and strong fire-resistant protective performance are noticeably required. Herein, inspired by the sandwich structure, we have designed a montmorillonite/aramid nanofibers@MXene (MMT/ANFs@MXene) nanocomposite with an alternating multilayered structure a simple AVF process. In this nanocomposite, the ANFs/MMT (AT) layer acts as a mechanically reinforced and insulation protection layer, while the MXene layer maintains a complete conductive network. The superior alternating multilayered structure endows the nanocomposite with outstanding mechanical properties (154.66 MPa, 14.22%) and excellent EMI shielding effectiveness values (58.4 dB). In addition, the fire-resistant protective performance of the nanocomposite improves its safety and reliability, especially, the EMI shielding effectiveness is maintained at ∼34 dB after burning for 30 s. Besides, the MMT/ANFs@MXene nanocomposite shows excellent Joule heating performance with a fast thermal response, low driving voltage and long-time temperature stability, which could reach 110.2 °C at only 3 V applied voltage within 10 s. As a result, this work presents a novel strategy for constructing multifunctional composites with outstanding overall performance, which will broaden application areas and prospects in thermal management and EMI shielding in wearable products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr01926dDOI Listing

Publication Analysis

Top Keywords

joule heating
12
fire-resistant protective
12
protective performance
12
emi shielding
12
montmorillonite/aramid nanofibers@mxene
8
nanocomposite alternating
8
multifunctional composites
8
heating performance
8
mmt/anfs@mxene nanocomposite
8
alternating multilayered
8

Similar Publications

Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.

Micromachines (Basel)

January 2025

Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.

Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy.

View Article and Find Full Text PDF

Upcycling of photovoltaic waste graphite into high performance graphite anode.

J Colloid Interface Sci

January 2025

Faculty of Metallurgical and Energy Engineering, Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:

High-value recycling of photovoltaic waste graphite (WG) is an effective path to achieve "carbon neutrality". However, the current most adopted methods are landfilling, incineration and leaching, which can lead to undesirable environmental contamination and waste of resources. Here, an energy-efficient and high-value flash recycling strategy is developed in which photovoltaic WG is converted to high-capacity and high-rate graphite anode for lithium-ion batteries (LIBs) in milliseconds.

View Article and Find Full Text PDF

High-quality two-dimensional transition metal dichalcogenides (2D TMDs), such as molybdenum disulfide (MoS), have significant potential for advanced electrical and optoelectronic applications. This study introduces a novel approach to control the localized growth of MoS through the selective oxidation of bulk molybdenum patterns using Joule heating, followed by sulfurization. By passing an electric current through molybdenum patterns under ambient conditions, localized heating induced the formation of a molybdenum oxide layer, primarily MoO and MoO, depending on the applied power and heating duration.

View Article and Find Full Text PDF

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!