A novel metal-organic framework (MOF) host-guest material [Cd(EtOIPA)(HAD)]·HO has been successfully synthesized by the reaction of 5-ethoxyisophthalic acid (EtOIPA), acridine (AD) and Cd(II) salts under hydrothermal conditions. Structurally, the title MOF possesses a trinucleate Cd(II) based 2D double-layer with the protonated AD cations as the template encapsulated into the grids. The combination of experiments and theoretical calculations reveals that the orderly arrangement of EtOIPA dimers, protonated AD cations and trinucleate Cd(II) clusters generates highly delocalized π-electron channels with a prolonged exciton lifetime. The MOF powders show bright yellow emission with a long lifetime of 50.63 ns. Photoelectrochemical measurements reveal a high photocurrent density ratio of 290 between light and dark conditions at 0 V bias potential, making it a perfect self-driven photodetector. By coating the yellow phosphor on a commercially available blue LED, a high performance white LED with CIE, CCT and CRI values of (0.325, 0.336), 88.2 and 5844 K, respectively can be obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01649d | DOI Listing |
Metal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.
View Article and Find Full Text PDFSmall
January 2025
Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Photo-thermal catalysis, leveraging both thermal and non-thermal solar contributions, emerges as a sustainable approach for fuel and chemical synthesis. In this study, an Fe-based catalyst derived from a metal-organic framework is presented for efficient photo-thermal ammonia (NH) decomposition. Optimal conditions, under light irradiation without external heating, result in a notable 55% NH conversion.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!