Proteins related to DNA replication have been proposed as cancer biomarkers and targets for anticancer agents. Among them, minichromosome maintenance (MCM) proteins, often overexpressed in various cancer cells, are recognized both as notable biomarkers for cancer diagnosis and as targets for cancer treatment. Here, we investigated the activity of cedrol, a single compound isolated from , in reducing the expression of MCM proteins in human lung carcinoma A549 cells. Remarkably, cedrol also strongly inhibited the expression of all other MCM protein family members in A549 cells. Moreover, cedrol treatment reduced cell viability in A549 cells, accompanied by cell cycle arrest at the G1 phase, and enhanced apoptosis. Taken together, this study broadens our understanding of how cedrol executes its anticancer activity while demonstrating that cedrol has potential application in the treatment of human lung cancer as an inhibitor of MCM proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628924PMC
http://dx.doi.org/10.4014/jmb.2205.05012DOI Listing

Publication Analysis

Top Keywords

mcm proteins
16
a549 cells
16
expression mcm
12
human lung
12
cell cycle
8
cycle arrest
8
reducing expression
8
proteins human
8
lung carcinoma
8
carcinoma a549
8

Similar Publications

Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response.

Cells

December 2024

Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.

The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Comparison of the Effects of UV-C Light in the Form of Flash or Continuous Exposure: A Transcriptomic Analysis on L.

Int J Mol Sci

December 2024

Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.

Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.

View Article and Find Full Text PDF

This longitudinal study examined how active gastrointestinal (GI) cancer types affect immune responses to SARS-CoV-2, focusing on the ability to neutralize the Omicron variants. Patients with GI cancer ( = 168) were categorized into those with hepatocellular carcinoma, hepatic metastatic GI cancer, non-hepatic metastatic GI cancer, and two control groups of patients with and without underlying liver diseases. Humoral and cellular immune responses were evaluated before and after Omicron antigen exposures.

View Article and Find Full Text PDF

Background: In CARTITUDE-4, ciltacabtagene autoleucel (cilta-cel) significantly improved progression-free survival (primary endpoint; previously reported) versus standard of care in patients with relapsed, lenalidomide-refractory multiple myeloma. We report here patient-reported outcomes.

Methods: In the ongoing, phase 3, open-label CARTITUDE-4 study, patients were recruited from 81 sites in the USA, Europe, Asia, and Australia, and were randomly assigned 1:1 to cilta-cel (target, 0·75 × 10 CAR-T cells/kg) or standard of care (daratumumab, pomalidomide, and dexamethasone; pomalidomide, bortezomib, and dexamethasone).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!