Aims: Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms.
Methods: Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed.
Results: Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways.
Conclusion: Reducing GABA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532914 | PMC |
http://dx.doi.org/10.1111/cns.13926 | DOI Listing |
J Neuroinflammation
November 2024
Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination which is reproduced in hyperammonemic rats. Hyperammonemia induces peripheral inflammation which triggers neuroinflammation and enhanced GABAergic neurotransmission in cerebellum and motor incoordination. The mechanisms involved remain unknown.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2024
Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
The risk of developing diabetes and cardiometabolic disorders is associated with increased levels of alpha-aminoadipic acid and disturbances in the metabolism of branched-chain amino acids. The side effects of the widely used antidiabetic drug metformin include impaired degradation of branched-chain amino acids and inhibition of intracellular thiamin transport. These effects may be interconnected, as thiamine deficiency impairs the functioning of thiamine diphosphate (ThDP)-dependent dehydrogenases of 2-oxo acids involved in amino acids degradation, while diabetes is often associated with perturbed thiamine status.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain. Electronic address:
J Neuroimmune Pharmacol
October 2024
Laboratory of Neurobiology, Príncipe Felipe Research Centre, Valencia, 46012, Spain.
Biol Res
April 2024
Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
Background: Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with mild cognitive impairment and motor incoordination. Rats with chronic hyperammonemia reproduce these alterations. Motor incoordination in hyperammonemic rats is due to increased GABAergic neurotransmission in cerebellum, induced by neuroinflammation, which enhances TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!