The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8 T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307950 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104717 | DOI Listing |
Eur J Med Chem
January 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Durham VA Health Care System, Durham; and Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina (K.M.G.).
Background: Tissue-based genomic classifiers (GCs) have been developed to improve prostate cancer (PCa) risk assessment and treatment recommendations.
Purpose: To summarize the impact of the Decipher, Oncotype DX Genomic Prostate Score (GPS), and Prolaris GCs on risk stratification and patient-clinician decisions on treatment choice among patients with localized PCa considering first-line treatment.
Data Sources: MEDLINE, EMBASE, and Web of Science published from January 2010 to August 2024.
Ann Intern Med
January 2025
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona.
Ann Intern Med
January 2025
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!