Land use change obviously changes the plant community composition and soil properties of grasslands and thus affects multiple functions and services of grassland ecosystems. However, the response mechanisms of soil microorganisms, key drivers of the nutrient cycle and other soil functions during changes in grassland use type and associated vegetation are not well understood. In this study, Illumina high-throughput sequencing was used to analyze the changes in the soil microbial community structure of four grassland use types: exclosure (EL), mowed land (ML), grazed land (GL), and farmland (FL) in the Songnen Plain of Northeast China. The results showed that the FL and EL had significantly higher soil total nitrogen (TN) and lower soil electrical conductivity (EC) and pH than GL and ML. In contrast, the GL and ML had higher soil bulk density (BD) and organic matter, respectively, than the other land use types. In addition, the values of the Shannon diversity and Pielou's evenness indexes were highest in the EL of all the land use types. Based on the high-throughput sequencing results, we observed high levels of α diversity in the FL for both bacteria and fungi. A structural equation model (SEM) revealed that pH and EC had a direct and positive effect on the bacterial community structure and composition. In addition, plant taxonomic diversity (according to the Shannon diversity and Pielou's evenness indexes) indirectly affected the bacterial community composition via soil pH and EC. Notably, fungal composition was directly and positively correlated with soil nutrients and the value of Pielou's evenness index changed with land use type. In conclusion, soil properties and/or plant diversity might drive the changes in the soil microbial community structure and composition in different grassland use types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307977PMC
http://dx.doi.org/10.3389/fmicb.2022.865184DOI Listing

Publication Analysis

Top Keywords

soil
12
soil microbial
12
microbial community
12
community structure
12
pielou's evenness
12
northeast china
8
community composition
8
composition soil
8
soil properties
8
high-throughput sequencing
8

Similar Publications

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Fungal keratitis caused by : a case report.

Front Med (Lausanne)

December 2024

Department of Ophthalmology, Ningbo Yinzhou No.2 Hospital, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China.

Background: We report a rare case of fungal keratitis caused by , a filamentous fungus that is widely distributed in soil and graminaceous plants.

Case Presentation: A 40-year-old Mongoloid male patient came to our outpatient clinic with painful swelling of the left eye and redness, after being cut by a tree branch 1 week prior. After examination, the patient was diagnosed with a corneal ulcer of the left eye, and was given levofloxacin eye drops and levofloxacin ophthalmic gel.

View Article and Find Full Text PDF

Using -rhizobia- interaction networks, we address first the soil invasion success of , and second, we report either -rhizobia partnership should form an isolated module within the symbiosis interaction network. Different indexes were used to determine model invasion success and the network topology. Our results indicated that invasion decreased soil microbial biomass, basal respiration, and enzymatic activities.

View Article and Find Full Text PDF

Introduction: The conjugative transfer of antibiotic resistance genes (ARGs) mediated by plasmids occurred in different intestinal segments of mice was explored.

Methods: The location of ARG donor bacteria and ARGs was investigated by qPCR, flow cytometry, and small animal imaging. The resistant microbiota was analyzed by gene amplification sequencing.

View Article and Find Full Text PDF

Introduction: Crop rotation of tobacco with other crops could effectively break the negative impact of continuous tobacco cropping, but the mechanisms of intercropping system effects on tobacco, especially on the rhizosphere, are not clear.

Methods: In this study, we investigated the impact of intercropping system on the diversity and function of tobacco metabolites and microorganisms through metabolomic and metagenomic analyses of the tobacco rhizosphere microenvironment intercropped with maize and soybean.

Results: The results showed that the contents of huperzine b, chlorobenzene, and P-chlorophenylalanine in tobacco rhizosphere soils differed significantly among soybean-tobacco and maize-tobacco intercropping system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!