Glycoprotein α-Subunit of Glucosidase II (GIIα) is a novel prognostic biomarker correlated with unfavorable outcome of urothelial carcinoma.

BMC Cancer

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.

Published: July 2022

Background: Urothelial carcinoma (UC) is among the most prevalent malignancies. The muscle-invasive bladder cancer (MIBC) shows an invasive feature and has poor prognosis, while the non-muscle invasive bladder cancer (NMIBC) shows a better prognosis as compared with the MIBC. However, a significant proportion (10%-30%) of NMIBC cases progress to MIBC. Identification of efficient biomarkers for the prediction of the course of UC remains challenging nowadays. Recently, there is an emerging study showed that post-translational modifications (PTMs) by glycosylation is an important process correlated with tumor angiogenesis, invasion and metastasis. Herein, we reported a data-driven discovery and experimental validation of GANAB, a key regulator of glycosylation, as a novel prognostic marker in UC.

Methods: In the present study, we conducted immunohistochemistry (IHC) assay to evaluate the correlation between the expression levels of GANAB protein and the prognosis of UC in our cohort of 107 samples using whole slide image (WSI) analysis. In vitro experiments using RNAi were also conducted to investigate the biological functions of GANAB in UC cell lines.

Results: We observed that positive GANAB protein expression was significantly correlated with poor prognosis of UC in our cohort, with p-value of 0.0017 in Log-rank test. Notably, tumor cells at the invasive front of the tumor margin showed stronger GANAB expression than the tumor cells inside the tumor body in UCs. We further validated that the elevated expression levels of GANAB were significantly correlated with high grade tumors (p-values of 1.72 × 10), advanced stages (6.47 × 10), and elevated in luminal molecular subtypes. Moreover, knocking-down GANAB using RNAi in UM-UC-3 and T24 cells inhibited cell proliferation and migration in vitro. Knockdown of GANAB resulted in cell cycle arrest at G1 phase. We demonstrated that GANAB mediated HIF1A and ATF6 transcriptional activation in the ER stress signaling, and regulated the gene expression of cell cycle-related transcriptional factors E2F7 and FOXM1.

Conclusions: The elevated expression of GANAB is a novel indicator of poorer prognosis of UC. Our data suggests that GANAB is not only a new and promising prognostic biomarker for UC, but also may provide important cues for the development of PTM-based therapeutics for UC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316353PMC
http://dx.doi.org/10.1186/s12885-022-09884-8DOI Listing

Publication Analysis

Top Keywords

ganab
11
novel prognostic
8
prognostic biomarker
8
urothelial carcinoma
8
bladder cancer
8
poor prognosis
8
expression levels
8
levels ganab
8
ganab protein
8
prognosis cohort
8

Similar Publications

Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE acute co-exposure.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China. Electronic address:

Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE), and 5 ng·L BDE + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is increasingly threatening the livestock industry by affecting animal productivity, welfare, and management, prompting a focus on enhancing livestock's climatic resilience (CR).
  • A study performed genome-wide association studies on lactating sows under heat stress, identifying 31 significant single nucleotide polymorphisms (SNPs) linked to nine CR indicators and revealing that CR is a polygenic trait with small effect sizes across various chromosomes.
  • Key candidate genes related to heat stress response and various physiological processes were identified, along with relevant pathways indicating links to stress, immune responses, and various traits like health and production quality in livestock.
View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis is a major disability cause, and exploring antidiabetic medications as disease-modifying osteoarthritis drugs (DMOADs) could significantly improve treatment options.
  • A comprehensive analysis involving genetic methodologies identified 14 potential drug targets among clinical antidiabetic medications, revealing different relationships between these drugs and osteoarthritis risk.
  • Notably, certain medications, like sulfonylureas, increased osteoarthritis risk, while thiazolidinediones and others were linked to reduced risk in specific joints, hinting at promising new therapeutic approaches.
View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) affects 1 in 1000 adults. Most cases result from causative PKD1 or PKD2 variants. HNF1B, GANAB and ALG9 variants are also associated with ADPKD.

View Article and Find Full Text PDF

AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry.

Autophagy

December 2024

Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China.

Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!